cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 321 results. Next

A033018 Numbers whose base-5 expansion has no run of digits with length < 2.

Original entry on oeis.org

6, 12, 18, 24, 31, 62, 93, 124, 150, 156, 162, 168, 174, 300, 306, 312, 318, 324, 450, 456, 462, 468, 474, 600, 606, 612, 618, 624, 750, 775, 781, 787, 793, 799, 812, 843, 874, 1500, 1531, 1550, 1556, 1562, 1568, 1574, 1593
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007091. Supersequence of A033003.

Programs

  • Mathematica
    Select[Range[10000],Min[Length/@Split[IntegerDigits[#, 5]]]>1&] (* Vincenzo Librandi, Feb 05 2014 *)

A039285 Numbers whose base-5 representation has the same nonzero number of 0's and 3's.

Original entry on oeis.org

15, 28, 40, 53, 65, 76, 77, 79, 80, 85, 95, 103, 115, 133, 138, 141, 142, 144, 148, 153, 165, 178, 190, 201, 202, 204, 205, 210, 220, 228, 240, 258, 263, 266, 267, 269, 273, 278, 290, 303, 315, 326, 327, 329, 330, 335, 345, 353, 365, 378, 381, 382, 384, 386
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007091.

Programs

  • Mathematica
    Select[Range[400],DigitCount[#,5,0]==DigitCount[#,5,3]>0&] (* Harvey P. Dale, Apr 18 2014 *)

A039563 Numbers whose base-5 representation has the same number of 0's, 1's and 2's.

Original entry on oeis.org

3, 4, 18, 19, 23, 24, 27, 35, 51, 55, 93, 94, 98, 99, 118, 119, 123, 124, 138, 139, 142, 147, 178, 179, 190, 195, 202, 210, 227, 235, 258, 259, 266, 271, 278, 279, 290, 295, 326, 330, 351, 355, 382, 386, 402, 410, 426, 430, 468, 469, 473, 474, 493, 494, 498
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007091 (numbers in base 5).

Programs

  • Magma
    f:=func; [k:k in [1..500]|f(k,5,0) eq f(k,5,1) and f(k,5,0) eq f(k,5,2)]; // Marius A. Burtea, Jan 17 2020
  • Maple
    filter:= proc(n) local L,m;
      L:= sort(select(`<=`,convert(n,base,5),2));
      m:= nops(L)/3;
      m::integer and L = [0$m,1$m,2$m];
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 17 2020
  • Mathematica
    Select[Range[500],DigitCount[#,5,0]==DigitCount[#,5,1] == DigitCount[ #,5,2]&] (* Harvey P. Dale, Dec 24 2021 *)

A102675 Number of digits >= 5 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007091 (numbers in base 5). - Bernard Schott, Feb 02 2023

References

  • Curtis Cooper, Number of large digits in the positive integers not exceeding n, Abstracts Amer. Math. Soc., 25 (No. 1, 2004), p. 38, Abstract 993-11-964.

Crossrefs

Cf. A000120, A000788, A023416, A059015 (for base 2).

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=5 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Count[IntegerDigits[n],?(#>4&)],{n,0,120}] (* _Harvey P. Dale, Nov 13 2013 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/2) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(5*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} x^(5*10^j)/(1 + x^(5*10^j)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A110595 a(1)=5. For n > 1, a(n) = 4*5^(n-1) = A005054(n).

Original entry on oeis.org

5, 20, 100, 500, 2500, 12500, 62500, 312500, 1562500, 7812500, 39062500, 195312500, 976562500, 4882812500, 24414062500, 122070312500, 610351562500, 3051757812500, 15258789062500, 76293945312500, 381469726562500
Offset: 1

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Comments

a(n) is the number of n-digit integers that contain only even digits (A014263). - Bernard Schott, Nov 11 2022

Crossrefs

Programs

  • Mathematica
    Join[{5},NestList[5#&,20,20]] (* Harvey P. Dale, Jun 19 2013 *)
    Rest[CoefficientList[Series[5 x (1 - x)/(1 - 5 x), {x,0,50}], x]] (* G. C. Greubel, Sep 01 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(5*x*(1-x)/(1-5*x)) \\ G. C. Greubel, Sep 01 2017

Formula

O.g.f.: 5*x*(1-x)/(1-5*x). - Better definition from R. J. Mathar, May 13 2008
Sum_{n>=1} 1/a(n) = 21/80. - Bernard Schott, Nov 11 2022

Extensions

Better definition from R. J. Mathar, May 13 2008
Incorrect comment removed by Michel Marcus, Nov 11 2022

A137469 Numbers with an odd number of 1's in base 5 expansion.

Original entry on oeis.org

1, 5, 7, 8, 9, 11, 16, 21, 25, 27, 28, 29, 31, 35, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 55, 57, 58, 59, 61, 66, 71, 76, 80, 82, 83, 84, 86, 91, 96, 101, 105, 107, 108, 109, 111, 116, 121, 125, 127, 128, 129, 131, 135, 137, 138, 139, 140, 142, 143, 144, 145
Offset: 1

Views

Author

Jonathan Vos Post, Apr 20 2008

Keywords

Comments

This is to A000069 (Odious numbers: odd number of 1's in binary expansion) as A007091 (Numbers in base 5) is to A007088 (Numbers written in base 2). Note that odd number of 1's in base 3 expansion is simply the odd numbers.

Examples

			a(18) = 40 (base 10) is in the sequence because 40 (base 10) = 130 (base 5) which has an odd number (1) of 1's ; whereas 41 is not in the sequence because 41 (base 10) = 131 (base 5) has an even number (2) of 1's.
		

Crossrefs

Programs

  • Maple
    isA137469 := proc(n) local a,d ; a := 0 ; for d in convert(n,base,5) do if d =1 then a := a+1 ; fi ; od; RETURN( a mod 2 = 1 ) ; end: for n from 1 to 400 do if isA137469(n) then printf("%d,",n) ; fi ; od: # R. J. Mathar, Apr 21 2008
  • Mathematica
    Select[Range[200], OddQ[DigitCount[ #, 5][[1]]] &] (* Stefan Steinerberger, Apr 21 2008 *)

Extensions

More terms from R. J. Mathar and Stefan Steinerberger, Apr 21 2008

A263611 Base 5 numbers whose square is a palindrome in base 5.

Original entry on oeis.org

0, 1, 2, 11, 101, 111, 231, 1001, 1111, 10001, 10101, 11011, 11204, 100001, 101101, 110011, 242204, 1000001, 1001001, 1010101, 1042214, 1100011, 2020303, 2043122, 2443304, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 111103411
Offset: 1

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

A029988 expressed in base 5.

Crossrefs

Programs

  • Mathematica
    With[{b = 5}, FromDigits@ IntegerDigits[#, b] & /@ Select[Range[b^9], PalindromeQ[IntegerDigits[#^2, b]] &]] (* Michael De Vlieger, Aug 15 2022 *)

Formula

a(n) = A007091(A029988(n)).

Extensions

Name corrected by Charles R Greathouse IV, Aug 15 2022

A293292 Numbers with last digit less than 5 (in base 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 70, 71, 72, 73, 74, 80, 81, 82, 83, 84, 90, 91, 92, 93, 94, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130
Offset: 1

Views

Author

Bruno Berselli, Oct 05 2017

Keywords

Comments

Equivalently, numbers k such that floor(k/5) = 2*floor(k/10).
After 0, partial sums of A010122 starting from the 2nd term.
The sequence differs from A007091 after a(25).
Also numbers k such that floor(k/5) is even. - Peter Luschny, Oct 05 2017

Crossrefs

Cf. A010122, A239229, A257145, A293481 (complement).
Sequences of the type floor(n/d) = (10/d)*floor(n/10), where d is a factor of 10: A008592 (d=1), A197652 (d=2), this sequence (d=5), A001477 (d=10).
Sequences of the type n + r*floor(n/r): A005843 (r=1), A042948 (r=2), A047240 (r=3), A047476 (r=4), this sequence (r=5).

Programs

  • Magma
    [n: n in [0..130] | n mod 10 lt 5];
    
  • Magma
    [n: n in [0..130] | IsEven(Floor(n/5))];
    
  • Magma
    [n+5*Floor(n/5): n in [0..70]];
    
  • Maple
    select(k -> type(floor(k/5), even), [$0..130]); # Peter Luschny, Oct 05 2017
  • Mathematica
    Table[n + 5 Floor[n/5], {n, 0, 70}]
    Reap[For[k = 0, k <= 130, k++, If[Floor[k/5] == 2*Floor[k/10], Sow[k]]]][[2, 1]] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 10}, 66] (* Jean-François Alcover, Oct 05 2017 *)
  • PARI
    concat(0, Vec(x^2*(1 + x + x^2 + x^3 + 6*x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^70))) \\ Colin Barker, Oct 05 2017
    
  • PARI
    select(k->floor(k/5) == 2*floor(k/10), vector(1000, k, k)) \\ Colin Barker, Oct 05 2017
    
  • Python
    [k for k in range(131) if (k//5) % 2 == 0] # Peter Luschny, Oct 05 2017
    
  • Python
    def A293292(n): return (n-1<<1)-(n-1)%5 # Chai Wah Wu, Oct 29 2024
    
  • Sage
    [k for k in (0..130) if 2.divides(floor(k/5))] # Peter Luschny, Oct 05 2017

Formula

G.f.: x^2*(1 + x + x^2 + x^3 + 6*x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6).
a(n) = (n-1) + 5*floor((n-1)/5) = 10*floor((n-1)/5) + ((n-1) mod 5).
a(n) = A257145(n+2) - A239229(n-1). - R. J. Mathar, Oct 05 2017
a(n) = 2n-2-((n-1) mod 5). - Chai Wah Wu, Oct 29 2024

Extensions

Definition by David A. Corneth, Oct 05 2017

A331561 The base-10 numbers with a digit product > 0 and which when written in bases 3,4,5,6,7,8,9 have three or more other base representations with the same digit product.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 12563124891, 115233863842, 123858133813, 363254652118, 1324658354423, 1511864334458, 1825693128524, 2321856215149, 2632654133853, 3146626254542, 3521445321466, 12462982162122, 12496523158865, 13129883155583, 13443165514365, 14213435966581
Offset: 1

Views

Author

Scott R. Shannon, Jan 20 2020

Keywords

Comments

This is a subsequence of A331565.

Examples

			6 is a term as 6_10 = 6_7 = 6_8 = 6_9, so it has three other base representations where the digit product also equals 6.
12563124891 is a term as 12563124891_10 = 5434343211123_6 = 623216541162_7 = 135464411233_8, so it has three other base representations where the digit product also equals 103680.
115233863842 is a term as 115233863842_10 = 124534313342214_6 = 11216413452466_7 = 1532436234242_8, so it has three other base representations where the digit product also equals 829440.
		

Crossrefs

Extensions

Terms a(10) and beyond from Giovanni Resta, Jan 27 2020

A374735 a(n) is the least k > 0 such that n and k*n can be added without carries in decimal.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 10, 1, 1, 1, 1, 1, 2, 2, 3, 10, 20, 1, 1, 1, 1, 1, 2, 2, 6, 5, 30, 1, 1, 1, 1, 1, 4, 7, 3, 20, 40, 1, 1, 1, 1, 1, 10, 5, 3, 5, 50, 2, 2, 2, 2, 6, 2, 2, 6, 30, 60, 2, 2, 2, 2, 5, 2, 2, 3, 15, 70, 3, 3, 3, 7, 3, 4, 12, 13, 40, 80, 5, 5
Offset: 0

Views

Author

Rémy Sigrist, Jul 18 2024

Keywords

Examples

			For n = 8:
- 1*8 = 8; computing 8 + 8 requires a carry,
- 2*8 = 16; computing 8 + 16 requires a carry,
- 3*8 = 24; computing 8 + 24 requires a carry,
- 4*8 = 32; computing 8 + 32 requires a carry,
- 5*8 = 40; computing 8 + 40 does not require a carry,
- so a(8) = 5.
		

Crossrefs

Cf. A007091, A261891 (analog for binary), A353623 (analog for balanced ternary), A374736.

Programs

  • PARI
    a(n, base = 10) = { for (k = 1, oo, if (sumdigits((k+1)*n, base) == sumdigits(n, base) + sumdigits(k*n, base), return (k););); }
    
  • Python
    from itertools import count
    def A374735(n):
        s = list(map(int,str(n)[::-1]))
        return next(k for k in count(1) if all(a+b<=9 for a, b in zip(s,map(int,str(k*n)[::-1])))) # Chai Wah Wu, Jul 19 2024

Formula

a(n) = 1 iff n belongs to A007091.
a(10*n) = a(n).
Previous Showing 61-70 of 321 results. Next