cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 204 results. Next

A037403 Numbers k such that every base-7 digit of k is a base-9 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 31, 99, 106, 107, 195, 198, 248, 257, 284, 297, 321, 498, 514, 749, 750, 751, 758, 767, 785, 936, 939, 940, 943, 950, 968, 996, 1028, 1086, 1088, 1110, 1163, 1200, 1218, 1254, 1453, 1471, 1498, 1500, 1502, 1507
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037403 n = a037403_list !! (n-1)
    a037403_list = filter f [1..] where
       f x = null $ nub (ds 7 x) \\ nub (ds 9 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013

A083901 Number of divisors of n with largest digit <= 6 (base 10).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 1, 3, 2, 4, 2, 6, 2, 3, 4, 4, 1, 4, 1, 6, 3, 4, 2, 7, 3, 4, 2, 4, 1, 8, 2, 5, 4, 3, 3, 7, 1, 2, 3, 7, 2, 7, 2, 6, 5, 4, 1, 8, 1, 6, 3, 6, 2, 5, 4, 5, 2, 2, 1, 12, 2, 4, 4, 6, 4, 8, 1, 4, 3, 6, 1, 8, 1, 2, 5, 3, 2, 6, 1, 8, 2, 3, 1, 9, 2, 3, 2, 6, 1, 9, 2, 5, 3, 2, 2, 9, 1, 3, 4, 9, 2, 7, 2, 7, 7
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Max[IntegerDigits[#]] <= 6 &]; Array[a, 100] (* Amiram Eldar, Jan 04 2024 *)

Formula

a(n) = A083900(n) + A083893(n) = A083902(n) - A083894(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A007093(k) = 7.32338572355014919630... . - Amiram Eldar, Jan 04 2024

A309958 Product of digits of (n written in base 7).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 2, 4, 6, 8, 10, 12, 0, 3, 6, 9, 12, 15, 18, 0, 4, 8, 12, 16, 20, 24, 0, 5, 10, 15, 20, 25, 30, 0, 6, 12, 18, 24, 30, 36, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 2, 4, 6, 8, 10, 12, 0, 3, 6, 9, 12, 15, 18, 0, 4, 8, 12, 16, 20, 24, 0, 5, 10, 15, 20, 25, 30, 0, 6, 12, 18, 24, 30, 36, 0, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2019

Keywords

Crossrefs

Product of digits of (n written in base k): A309953 (k = 3), A309954 (k = 4), A309956 (k = 5), A309957 (k = 6), this sequence (k = 7), A309959 (k = 8), A309788 (k = 9), A007954 (k = 10).

Programs

  • Magma
    [0] cat [&*Intseq(n,7):n in [1..100]]; // Marius A. Burtea, Aug 25 2019
    
  • Mathematica
    Table[Times @@ IntegerDigits[n, 7], {n, 0, 100}]
  • PARI
    a(n) = my(v=vecprod(digits(n, 7))); n>0 && return(v) \\ Felix Fröhlich, Sep 09 2019

Formula

G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5) * (1 + A(x^7)).

A004690 Fibonacci numbers written in base 7.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 11, 16, 30, 46, 106, 155, 264, 452, 1046, 1531, 2610, 4441, 10351, 15122, 25503, 43625, 102431, 146356, 252120, 431506, 1013626, 1445435, 2462364, 4241132, 10033526, 14304661, 24341520
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000045 (Fibonacci), A007093 (numbers in base 7).

Programs

A024639 n written in fractional base 7/2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 20, 21, 22, 23, 24, 25, 26, 40, 41, 42, 43, 44, 45, 46, 60, 61, 62, 63, 64, 65, 66, 210, 211, 212, 213, 214, 215, 216, 230, 231, 232, 233, 234, 235, 236, 250, 251, 252, 253, 254, 255, 256, 400, 401, 402, 403, 404, 405, 406, 420, 421, 422, 423, 424, 425
Offset: 0

Views

Author

Keywords

Comments

To represent a number in base 7, if a digit exceeds 6, subtract 7 and carry 1. In the fractional base 7/2, subtract 7 and carry 2.

Examples

			From _Alonso del Arte_, Apr 21 2019: (Start)
The integers 0 through 6 are written with the digits 0 through 6.
Then, since b = 7/2 is written as 10, and 7 is twice 7/2, 7 is 20 in base 7/2, and therefore a(7) = 20.
a(28) = 210 since 2 * (7/2)^2 + 1 * (7/2) = 2 * 49/4 + 1 * 7/2 = 98/4 + 14/4 = 112/4 = 28. (End)
		

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[IntegerDigits[n, 7]], {n, 0, 230}], IntegerQ[FromDigits[IntegerDigits[#], 7/2]] &] (* Alonso del Arte, Apr 21 2019 *)
    a[n_] := a[n] = If[n == 0, 0, 10 * a[2 * Floor[n/7]] + Mod[n, 7]]; Array[a, 50, 0] (* Amiram Eldar, Jul 31 2025 *)
  • PARI
    a(n) = if(n == 0, 0, 10 * a(n\7 * 2) + n % 7); \\ Amiram Eldar, Jul 31 2025

A032548 Integer part of decimal 'base-7 looking' numbers divided by their actual base-7 values.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Crossrefs

Cf. A007093, A032549, A032550. See also A032532 for explanation.

Programs

Formula

a(n) = floor(A007093(n)/n). - Antti Karttunen, Jan 01 2019

Extensions

Offset corrected by Antti Karttunen, Jan 01 2019

A032862 Numbers whose base-7 representation Sum_{i=0..m} d(i)*7^i has d(m) > d(m-1) < d(m-2) > ...

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 14, 15, 21, 22, 23, 28, 29, 30, 31, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 99, 100, 101, 102, 103, 104, 107, 108, 109, 110, 111, 148, 149, 150, 151, 152, 153, 156, 157, 158, 159, 160, 164
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007093.
Cf. A032858..A032865 for bases 3..10.
Cf. A306106..A306111 and A297147 for bases 3..9 and 10.

Extensions

a(1)=0 inserted by Georg Fischer, Dec 18 2020

A033170 Positive numbers having the same set of digits in base 6 and base 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 68, 122, 246, 397, 425, 513, 625, 696, 970, 1062, 1167, 1215, 1244, 1251, 1576, 1722, 1787, 1823, 1871, 2406, 2413, 2532, 2574, 2660, 2844, 2851, 2856, 2857, 2858, 2859, 2860, 2861, 2864, 2865, 2872, 2879, 2900, 2954, 3005
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = Set(digits(n, 6)) == Set(digits(n, 7)); \\ Michel Marcus, Jan 21 2017

Extensions

Edited by Don Reble, Apr 28 2006
Further edited by N. J. A. Sloane, Jan 17 2009 at the suggestion of R. J. Mathar

A037440 Positive numbers having the same set of digits in base 7 and base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 23, 46, 265, 316, 1030, 1234, 1336, 1366, 1401, 1431, 1443, 1454, 1464, 2060, 2116, 3261, 3515, 3621, 4631, 5052, 10144, 10342, 10542, 11134, 11425, 11524, 11544, 12415, 12450, 12532, 12564, 12651, 13035, 13045, 13245
Offset: 1

Views

Author

Keywords

Examples

			1336 is in the sequence because 1336 in base 7 is 3616.
		

Crossrefs

Subsequence of A037404.
Cf. A007093.

Programs

  • Mathematica
    Select[Range@ 13300, Union@ IntegerDigits@ # == Union@ IntegerDigits[#, 7] &] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    isok(n) = Set(digits(n, 7)) == Set(digits(n)); \\ Michel Marcus, Feb 18 2017
    
  • Python
    from sympy.ntheory import digits
    def ok(n): return set(map(int, str(n))) == set(digits(n, 7)[1:])
    print([k for k in range(1, 10**6) if ok(k)]) # Michael S. Branicky, Apr 22 2023

Extensions

More terms from Don Reble, Apr 28 2006
Edited by John Cerkan, Feb 17 2017

A044956 Numbers with no two equally numerous base 7 digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 16, 24, 32, 40, 48, 49, 50, 56, 57, 58, 59, 60, 61, 62, 64, 65, 71, 73, 78, 81, 85, 89, 92, 97, 98, 100, 106, 107, 112, 113, 114, 115, 116, 117, 118, 121, 122, 128, 130, 135, 138, 142, 146, 147, 150, 155, 157, 163, 164
Offset: 1

Views

Author

Keywords

Examples

			106 in base 7 is 211, which has one more 1 than it has 2's.
107 in base 7 is 212, which has one more 2 than it has 1's.
108 in base 7 is 213. Since each digit occurs as many times as the others (once each), 108 is not in the sequence.
		

Crossrefs

Cf. A007093 (numbers in base 7), A023802.

Programs

  • Mathematica
    enb7Q[n_] := Module[{t = Tally[IntegerDigits[n, 7]][[All, 2]]}, Length[t] == Length[Union[t]]]; Select[Range[200], enb7Q] (* Harvey P. Dale, Jul 26 2018 *)
Previous Showing 31-40 of 204 results. Next