cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-69 of 69 results.

A327400 Number of factorizations of n that are constant or whose factors are relatively prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 7, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 10, 1, 2, 3, 3, 2, 5, 1, 6, 3, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2019

Keywords

Comments

First differs from A327399 at a(24) = 4, A327399(24) = 3.

Examples

			The factorizations of 2, 4, 12, 24, 30, 36, 48, and 60 that are constant or whose factors are relatively prime:
  2   4     12      24        30      36        48          60
      2*2   3*4     3*8       5*6     4*9       3*16        3*20
            2*2*3   2*3*4     2*15    6*6       2*3*8       4*15
                    2*2*2*3   3*10    2*2*9     3*4*4       5*12
                              2*3*5   2*3*6     2*2*3*4     2*5*6
                                      3*3*4     2*2*2*2*3   3*4*5
                                      2*2*3*3               2*2*15
                                                            2*3*10
                                                            2*2*3*5
		

Crossrefs

Constant factorizations are A089723.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||Length[Union[#]]==1||GCD@@#==1&]],{n,100}]

Formula

a(n) = A281116(n) + A089723(n).

A338316 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 95, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 131, 135, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. a(n) gives the n-th Heinz number of an integer partition with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime (A338317).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          33: {2,5}       71: {20}
      3: {2}         35: {3,4}       73: {21}
      5: {3}         37: {12}        75: {2,3,3}
      7: {4}         41: {13}        77: {4,5}
      9: {2,2}       43: {14}        79: {22}
     11: {5}         45: {2,2,3}     81: {2,2,2,2}
     13: {6}         47: {15}        83: {23}
     15: {2,3}       49: {4,4}       85: {3,7}
     17: {7}         51: {2,7}       89: {24}
     19: {8}         53: {16}        93: {2,11}
     23: {9}         55: {3,5}       95: {3,8}
     25: {3,3}       59: {17}        97: {25}
     27: {2,2,2}     61: {18}        99: {2,2,5}
     29: {10}        67: {19}       101: {26}
     31: {11}        69: {2,9}      103: {27}
		

Crossrefs

A338315 does not consider singletons coprime, with Heinz numbers A337987.
A338317 counts the partitions with these Heinz numbers.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A007359 counts singleton or pairwise coprime partitions with no 1's, with Heinz numbers A302568.
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A302797 lists squarefree numbers whose distinct parts are pairwise coprime.
A304709 counts partitions whose distinct parts are pairwise coprime, with Heinz numbers A304711.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337485 counts pairwise coprime partitions with no 1's, with Heinz numbers A337984.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    Select[Range[1,100,2],#==1||PrimePowerQ[#]||CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]

A338317 Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0

Views

Author

Gus Wiseman, Oct 24 2020

Keywords

Examples

			The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
  2   3   4    5    6     7     8      9      A       B       C
          22   32   33    43    44     54     55      65      66
                    222   52    53     72     73      74      75
                          322   332    333    433     83      444
                                2222   522    532     92      543
                                       3222   3322    443     552
                                              22222   533     732
                                                      722     3333
                                                      3332    5322
                                                      5222    33222
                                                      32222   222222
		

Crossrefs

A007359 (A302568) gives the strict case.
A101268 (A335235) gives pairwise coprime or singleton compositions.
A200976 (A338318) gives the pairwise non-coprime instead of coprime version.
A304709 (A304711) gives partitions whose distinct parts are pairwise coprime, with strict case A305713 (A302797).
A304712 (A338331) allows 1's, with strict version A007360 (A302798).
A327516 (A302696) gives pairwise coprime partitions.
A328673 (A328867) gives partitions with no distinct relatively prime parts.
A338315 (A337987) does not consider singletons coprime.
A338317 (A338316) gives these partitions.
A337462 (A333227) gives pairwise coprime compositions.
A337485 (A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (A333228) gives compositions with pairwise coprime distinct parts.
A337667 (A337666) gives pairwise non-coprime compositions.
A337697 (A022340 /\ A333227) = pairwise coprime compositions with no 1's.
A337983 (A337696) gives pairwise non-coprime strict compositions, with unordered version A318717 (A318719).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]

Formula

The Heinz numbers of these partitions are given by A338316. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

A338468 Odd squarefree numbers whose prime indices have no common divisor > 1.

Original entry on oeis.org

15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 205, 209, 215, 217, 219, 221, 231, 249, 253, 255, 265, 285, 287, 291, 295, 309, 323, 327, 329, 335, 341, 345, 355, 357, 381, 385, 391, 395, 403, 407, 411
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of relatively prime strict integer partitions with no 1's (A337452). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}      145: {3,10}     249: {2,23}     355: {3,20}
     33: {2,5}      155: {3,11}     253: {5,9}      357: {2,4,7}
     35: {3,4}      161: {4,9}      255: {2,3,7}    381: {2,31}
     51: {2,7}      165: {2,3,5}    265: {3,16}     385: {3,4,5}
     55: {3,5}      177: {2,17}     285: {2,3,8}    391: {7,9}
     69: {2,9}      187: {5,7}      287: {4,13}     395: {3,22}
     77: {4,5}      195: {2,3,6}    291: {2,25}     403: {6,11}
     85: {3,7}      201: {2,19}     295: {3,17}     407: {5,12}
     93: {2,11}     205: {3,13}     309: {2,27}     411: {2,33}
     95: {3,8}      209: {5,8}      323: {7,8}      413: {4,17}
    105: {2,3,4}    215: {3,14}     327: {2,29}     415: {3,23}
    119: {4,7}      217: {4,11}     329: {4,15}     429: {2,5,6}
    123: {2,13}     219: {2,21}     335: {3,19}     435: {2,3,10}
    141: {2,15}     221: {6,7}      341: {5,11}     437: {8,9}
    143: {5,6}      231: {2,4,5}    345: {2,3,9}    447: {2,35}
		

Crossrefs

A302568 is the prime or pairwise coprime version, counted by A007359.
A302697 is not required to be squarefree, counted by A302698 (ordered version: A337450).
A302796 allows evens, counted by A078374 (ordered version: A332004).
A337452 counts partitions with these Heinz numbers (ordered version: A337451).
A337984 is the pairwise coprime version, counted by A337485 (ordered version: A337697).
A005117 lists squarefree numbers.
A005408 lists odd numbers.
A056911 lists odd squarefree numbers.
A289509 lists Heinz numbers of relatively prime partitions, counted by A000837 (ordered version: A000740).

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&GCD@@PrimePi/@First/@FactorInteger[#]==1&]

A366853 Number of integer partitions of n into odd, pairwise coprime parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 18, 20, 22, 25, 29, 33, 36, 39, 43, 49, 55, 61, 66, 69, 75, 85, 94, 104, 113, 120, 129, 143, 159, 172, 183, 193, 207, 226, 251, 272, 288, 304, 325, 350, 383, 414, 437, 460, 494, 532, 577, 622, 655, 684
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Examples

			The a(1) = 1 through a(10) = 7 partitions:
1  11  3    31    5      51      7        53        9          73
       111  1111  311    3111    511      71        531        91
                  11111  111111  31111    5111      711        5311
                                 1111111  311111    51111      7111
                                          11111111  3111111    511111
                                                    111111111  31111111
                                                               1111111111
		

Crossrefs

Partitions into odd parts are counted by A000009, ranks A066208.
Allowing even parts gives A051424.
For relatively prime (not pairwise coprime): A366843, with evens A000837.
A000041 counts integer partitions, strict A000009 (also into odds).
A101268 counts pairwise coprime compositions.
A168532 counts partitions by gcd.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#==1&)/@Subsets[y,{2}]
    Table[Length[Select[IntegerPartitions[n],And@@OddQ/@#&&pwcop[#]&]],{n,0,30}]

A302534 Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 41, 43, 47, 51, 55, 58, 59, 62, 66, 67, 73, 79, 82, 83, 85, 86, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163, 165, 166, 167, 170, 177
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
58: {{},{1,3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Join@@primeMS/@primeMS[#]&]

A320439 Number of factorizations of n into factors > 1 where each factor's prime indices are relatively prime. Number of factorizations of n using elements of A289509.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 1, 5, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 7, 1, 1, 1, 3, 0, 1, 0, 4, 0, 1, 0, 2, 1, 1, 0, 7, 0, 1, 1, 2, 0, 1, 1, 4, 0, 1, 0, 5, 0, 1, 0, 11, 0, 2, 0, 2, 1, 2, 0, 6, 0, 1, 1, 2, 1, 1, 0, 7, 0, 1, 0, 3, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n using multisets each of which is relatively prime.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Two or more numbers are relatively prime if they have no common divisor > 1. A single number is not considered to be relatively prime unless it is equal to 1.

Examples

			The a(72) = 6 factorizations are (2*2*18), (2*6*6), (2*36), (4*18), (6*12), (72).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facsrp[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[facsrp[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],GCD@@primeMS[#]==1&]}]];
    Table[Length[facsrp[n]],{n,100}]
  • PARI
    A320439(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d<=m)&&(1==gcd(apply(x->primepi(x), factor(d)[, 1]))), s += A320439(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2021

A340267 Maximum LCM of partitions of n into pairwise coprime parts that are >= 2.

Original entry on oeis.org

2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 42, 84, 105, 140, 210, 210, 420, 280, 330, 360, 840, 504, 1260, 1155, 1540, 2310, 2520, 4620, 3080, 5460, 3960, 9240, 5544, 13860, 6930, 16380, 15015, 27720, 30030, 32760, 60060, 40040, 45045, 51480, 120120, 72072, 180180
Offset: 2

Views

Author

Fausto A. C. Cariboni, Jan 02 2021

Keywords

Comments

a(n) <= A123131(n).

Examples

			For n=22 we have a(22) = 360 since 22 = 5 + 8 + 9 and lcm([5, 8, 9]) = 360.
Note a(22) = 360 < A123131(22) = 420.
		

Crossrefs

Programs

  • PARI
    isok(p) = {for (i=1, #p, for (j=i+1, #p, if (gcd(p[i], p[j]) > 1, return(0)););); return(1);}
    a(n) = {my(x=1); forpart(p=n, if ((vecmin(p)>=2) && isok(p), x = max(x, lcm(Vec(p))));); x;} \\ Michel Marcus, Jan 03 2021

A086191 Number of partitions of primes into mutual coprimes > 1.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 18, 30, 34, 56, 78, 87, 125, 182, 263, 279, 402, 520, 565, 773, 987, 1328, 1878, 2332, 2485, 3092, 3235, 3999, 6957, 8396, 10734, 11228, 16920, 17703, 22237, 27589, 32577, 40187, 49227, 51427, 73453, 76998, 89430, 93452
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 27 2003

Keywords

Comments

a(n) = A007359(A000040(n)).

Examples

			n=10: A000040(10) = 29 = 27+2 = 26+3 = 25+4 = 24+5 = 23+6 = 22+7
= 21+8 = 20+9 = 19+10 = 19+7+3 = 19+5+3+2 = 18+11 = 17+12 = 17+7+5 =
17+7+3+2 = 17+5+4+3 = 16+13 = 15+14 = 15+7+4+3 = 13+11+5 = 13+11+3+2 =
13+9+7 = 13+9+5+2 = 13+7+5+4 = 11+9+7+2 = 11+9+5+4 = 11+8+7+3 = 11+7+6+5 =
9+8+7+5: a(10)=30.
		

Crossrefs

Programs

  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #Jean-François Alcover, Oct 06 2021, after Alois P. Heinz in A007359 *)
Previous Showing 61-69 of 69 results.