cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A030704 Numbers k such that the decimal expansion of 8^k contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 17, 24, 27
Offset: 1

Views

Author

Keywords

Comments

Integers in A007377 / 3. - M. F. Hasler, Mar 07 2014

Crossrefs

Cf. A007377 (analog for 2^n), A030700 (for 3^n), A030701 (for 4^n), A008839 (for 5^n), A030702 (for 6^n), A030703 and A195908 (for 7^n), A030705 (for 9^n), A030706 and A195946 (for 11^n), A195944 and A195945 (for 13^n).
This is row 0 of A305928.

Programs

  • Magma
    [n: n in [0..500] | not 0 in Intseq(8^n)]; // Vincenzo Librandi, Mar 08 2014
  • Mathematica
    Select[Range[0,30],DigitCount[8^#,10,0]==0&] (* Harvey P. Dale, Jul 13 2016 *)
  • PARI
    select( is(n)=vecmin(digits(8^n)), [0..30]) \\ M. F. Hasler, Mar 07 2014
    

Extensions

Several edits (offset 1, initial 0, title rephrased) by M. F. Hasler, Mar 07 2014

A195908 Powers of 7 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 7, 49, 343, 117649, 823543, 282475249, 1977326743, 11398895185373143, 378818692265664781682717625943
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 378818692265664781682717625943 the largest term?
No further terms up to 7^50,000, a number with 42,255 digits. - Harvey P. Dale, Jul 14 2022

Crossrefs

Programs

  • Magma
    [7^n: n in [0..3*10^4] | not 0 in Intseq(7^n)]; // Bruno Berselli, Sep 26 2011
  • Mathematica
    Select[7^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Jul 14 2022 *)
  • PARI
    for( n=1,9999, is_A052382(7^n) && print1(7^n,","))
    

Formula

a(n) = 7^A030703(n).
A000420 intersect A052382.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A195946 Powers of 11 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 11, 121, 1331, 14641, 1771561, 19487171, 214358881, 2357947691, 3138428376721, 34522712143931, 379749833583241, 4177248169415651, 45949729863572161, 5559917313492231481, 4978518112499354698647829163838661251242411
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 4978518112499354698647829163838661251242411 the largest term?

Crossrefs

For the zeroless numbers (powers x^n), see A195942, A195943, A238938, A238939, A238940, A195948, A238936, A195908, A195945.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.

Programs

  • Magma
    [11^n: n in [0..3*10^4] | not 0 in Intseq(11^n)]; // Bruno Berselli, Sep 26 2011
  • Mathematica
    Select[11^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Jan 27 2014 *)
  • PARI
    for( n=0,9999, is_A052382(11^n) && print1(11^n,","))
    

Formula

a(n) = 11^A030706(n).
A195946 = A001020 intersect A052382.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A195943 Zeroless prime powers: Intersection of A000961 and A052382.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, 256, 257, 263, 269, 271, 277, 281, 283, 289, 293, 311
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

In contrast to A195942, we also allow for primes (p^n with n=1) in this sequence.

Crossrefs

Programs

  • Haskell
    a195943 n = a195943_list !! (n-1)
    a195943_list = filter ((== 1) . a010055) a052382_list
    -- Reinhard Zumkeller, Sep 27 2011
  • PARI
    for( n=1,9999, is_A000961(n) && is_A052382(n) && print1(n","))
    

Formula

A010055(a(n)) * A168046(a(n)) = 1. - Reinhard Zumkeller, Sep 27 2011

A195945 Powers of 13 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 13, 169, 2197, 28561, 371293, 62748517, 137858491849, 3937376385699289
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 3937376385699289 the largest term?
No further terms up to 13^25000. - Harvey P. Dale, Oct 01 2011
No further terms up to 13^45000. - Vincenzo Librandi, Jul 31 2013
No further terms up to 13^(10^9). - Daniel Starodubtsev, Mar 22 2020

Crossrefs

For other zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A195946 (x=11), A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944 and also A020665.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Magma
    [13^n: n in [0..2*10^4] | not 0 in Intseq(13^n)]; // Bruno Berselli, Sep 26 2011
  • Mathematica
    Select[13^Range[0,250],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    for(n=0,9999, is_A052382(13^n) && print1(13^n,","))
    

Formula

Equals A001022 intersect A052382 (as a set).
Equals A001022 o A195944 (as a function).

A195942 Zeroless prime powers (excluding primes): Intersection of A025475 and A052382.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 3125, 3481, 3721, 4489, 4913, 5329, 6241, 6561, 6859, 6889, 7921, 8192
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a195942 n = a195942_list !! (n-1)
    a195942_list = filter (\x -> a010051 x == 0 && a010055 x == 1) a052382_list
    -- Reinhard Zumkeller, Sep 27 2011
  • Mathematica
    mx = 10^10; t = {1}; p = 2; While[pw = 2; While[n = p^pw; n <= mx, If[Union[IntegerDigits[n]][[1]] > 0, AppendTo[t, n]]; pw++]; pw > 2, p = NextPrime[p]]; t = Sort[t] (* T. D. Noe, Sep 27 2011 *)
  • PARI
    for( n=1,9999, is_A025475(n) && is_A052382(n) && print1(n","))
    

Formula

A195942 = A025475 intersect A052382.
A010055(a(n)) * (1 - A010051(a(n))) * A168046(a(n)) = 1. - Reinhard Zumkeller, Sep 27 2011

A195944 Numbers k such that 13^k has no zero in its decimal expansion.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 10, 14
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 14 the largest term?

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | not 0 in Intseq(13^n) ]; // Vincenzo Librandi, May 06 2015
  • Mathematica
    Select[Range[0,20],DigitCount[13^#,10,0]==0&] (* Harvey P. Dale, May 24 2023 *)
  • PARI
    for( n=0,9999, is_A052382(13^n) && print1(n","))
    

Formula

Equals { n | A001022(n) is in A052382 }.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A195948 Powers of 5 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 5, 25, 125, 625, 3125, 15625, 78125, 1953125, 9765625, 48828125, 762939453125, 3814697265625, 931322574615478515625, 116415321826934814453125, 34694469519536141888238489627838134765625
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 34694469519536141888238489627838134765625 the largest term?

Crossrefs

Programs

  • Mathematica
    Select[5^Range[0,60],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    for( n=0,9999, is_A052382(5^n) && print1(5^n,","))

Formula

a(n) = 5^A008839(n).
A000351 intersect A052382.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A102483 Numbers k such that 2^k contains no zeros in base 3.

Original entry on oeis.org

0, 1, 2, 3, 4, 15
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2005

Keywords

Comments

I conjectured in 1973 that there are no further terms. This question is still open.
A104320(a(n)) = 0. - Reinhard Zumkeller, Mar 01 2005
No other terms less than 200000. - Robert G. Wilson v, Dec 06 2005
a(7) > 10^7. - Martin Ehrenstein, Jul 27 2021
If it exists, a(7) > 10^21. - Robert Saye, Mar 23 2022

Crossrefs

Programs

  • Mathematica
    Select[ Range@1000, FreeQ[ IntegerDigits[2^#, 3], 0] &] (* Robert G. Wilson v, Dec 06 2005 *)
  • PARI
    for (n=0, 100, if (vecmin(digits(2^n, 3)), print1(n, ", "))) \\ Michel Marcus, Mar 25 2015

A031146 Exponent of the least power of 2 having exactly n zeros in its decimal representation.

Original entry on oeis.org

0, 10, 42, 43, 79, 88, 100, 102, 189, 198, 242, 250, 252, 263, 305, 262, 370, 306, 368, 383, 447, 464, 496, 672, 466, 557, 630, 629, 628, 654, 657, 746, 771, 798, 908, 913, 917, 906, 905, 1012, 1113, 988, 1020, 989, 1044, 1114, 1120, 1118, 1221, 1218, 1255
Offset: 0

Views

Author

Keywords

Examples

			a(3) = 43 since 2^m contains 3 0's for m starting with 43 (2^43 = 8796093022208) and followed by 53, 61, 69, 70, 83, 87, 89, 90, 93, ...
		

Crossrefs

Cf. A063555 (analog for 3^k), A063575 (for 4^k), A063585 (for 5^k), A063596 (for 6^k), A063606 (for 7^k), A063616 (for 8^k), A063626 (for 9^k).

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ Count[ IntegerDigits[2^k], 0] != n, k++ ]; a = Append[a, k], {n, 0, 50} ]; a (* Robert G. Wilson v, Jun 12 2004 *)
    nn = 100; t = Table[0, {nn}]; found = 0; k = 0; While[found < nn, k++; cnt = Count[IntegerDigits[2^k], 0]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; found++]]; t = Join[{0}, t] (* T. D. Noe, Mar 14 2012 *)
  • PARI
    A031146(n)=for(k=0, oo, #select(d->!d, digits(2^k))==n&&return(k)) \\ M. F. Hasler, Jun 15 2018

Extensions

More terms from Erich Friedman
Definition clarified by Joerg Arndt, Sep 27 2016
Previous Showing 11-20 of 57 results. Next