cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 80 results. Next

A103349 Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).

Original entry on oeis.org

1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(8,n) of Euler's Zeta(8). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103350 and for the rationals Zeta(8,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n)=numerator(sum_{k=1..n} 1/k^8).
G.f. for rationals Zeta(8, n): polylogarithm(8, x)/(1-x).

A128670 Least number k > 0 such that k^n does not divide the denominator of generalized harmonic number H(k,n) nor the denominator of alternating generalized harmonic number H'(k,n).

Original entry on oeis.org

77, 20, 94556602, 42, 444, 20, 104, 42, 76, 20, 77, 110, 3504, 20, 903, 42, 1107, 20, 104, 42, 77, 20, 2948, 110, 136, 20, 76, 42, 903, 20, 77, 42, 268, 20, 7004, 110, 1752, 20, 19203, 42, 77, 20, 104, 42, 76, 20, 370, 110, 1107, 20, 77, 42, 12246, 20, 104, 42
Offset: 1

Views

Author

Alexander Adamchuk, Mar 24 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m}1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Some apparent periodicity in {a(n)} (not without exceptions): a(n) = 20 for n = 2 + 4m, a(n) = 42 for n = 4 + 12m and 8 + 12m, a(n) = 76 for n = 9 + 18m, a(n) = 77 for n = 1 + 10m, a(n) = 104 for n = 7 + 12m, a(n) = 110 for n = 12m, a(n) = 136 for n = 25 + 32m, etc.
See more details in Comments at A128672 and A125581.

Crossrefs

Extensions

More terms and b-file from Max Alekseyev, May 07 2010

A128674 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 4.

Original entry on oeis.org

42, 110, 156, 272, 294, 342, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2058, 2162, 2756, 3422, 3660, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 9312, 10100, 10506, 11342, 11638, 11772, 12656, 13310, 14406, 16002, 17030, 18632, 19182, 22052, 22650, 23548, 24492, 26364
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains geometric progressions of the form (p-1)*p^k for k > 0 and some prime p > 5. Note the factorization of initial terms of {a(n)} = {6*7, 10*11, 12*13, 16*17, 6*7^2, 18*19, 22*23, 28*29, 30*31, 10*11*2, 36*37, 40*41, 42*43, 12*13^2, 6*7^3, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=4; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,2000} ]

Extensions

Edited and extended by Max Alekseyev, May 09 2010

A103351 Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).

Original entry on oeis.org

1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(9,n), of Euler's Zeta(9). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103352 and for the rationals Zeta(9,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^9).
G.f. for rationals Zeta(9, n): polylogarithm(9, x)/(1-x).

A120290 Numerator of generalized harmonic number H(p-1,2p)= Sum[ 1/k^(2p), {k,1,p-1}] divided by p^2 for prime p>3.

Original entry on oeis.org

2479157521, 159936660724017234488561, 1119583852472161859174156302552583713828739479026834819554843860744244189
Offset: 3

Views

Author

Alexander Adamchuk, Jul 08 2006

Keywords

Comments

Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,2p) is divisible by p^2 for prime p>3.

Examples

			With prime(3) = 5, a(3) = numerator[ 1 + 1/2^10 + 1/3^10 + 1/4^10 ] / 5^2 = 61978938025 / 25 = 2479157521.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[1/k^(2*Prime[n]),{k,1,Prime[n]-1}]],{n,3,7}]/Table[Prime[n]^2,{n,3,7}]

Formula

a(n) = numerator[ Sum[ 1/k^(2*Prime[n]), {k,1,Prime[n]-1} ]] / Prime[n]^2 for n>2.

A128671 Least number k > 0 such that k^p does not divide the denominator of generalized harmonic number H(k,p) nor the denominator of alternating generalized harmonic number H'(k,p), where p = prime(n).

Original entry on oeis.org

20, 94556602, 444, 104, 77, 3504, 1107, 104, 2948, 903, 77, 1752, 77, 104, 370
Offset: 1

Views

Author

Alexander Adamchuk, Mar 24 2007, Mar 26 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{i=1..m} 1/i^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{i=1..m} (-1)^(i+1)*1/i^k.
a(18)..a(24) = {77,104,77,136,104,370,136}. a(26)..a(27) = {77,104}.
a(n) is currently unknown for n = {16,17,25,...}. See more details in Comments at A128672 and A125581.

Examples

			a(2) = A128673(1) = 94556602.
		

Crossrefs

Formula

a(n) = A128670(prime(n)).

Extensions

a(9) = 2948 and a(12) = 1752 from Max Alekseyev
Edited by Max Alekseyev, Feb 20 2019

A214508 Decimal expansion of the series limit sum_{k>=1} (-1)^(k+1) sum_{t=1..k} 1/(t^2*(k+1)^2).

Original entry on oeis.org

1, 6, 2, 6, 5, 4, 6, 6, 7, 3, 9, 7, 4, 2, 0, 0, 8, 0, 7, 7, 5, 5, 6, 4, 5, 6, 5, 1, 7, 3, 5, 9, 1, 1, 0, 1, 1, 8, 7, 0, 6, 4, 2, 0, 8, 3, 3, 7, 6, 5, 9, 9, 2, 3, 7, 2, 6, 7, 6, 3, 0, 6, 9, 8, 3, 1, 8, 4, 3, 5, 7, 7, 2, 9, 8, 2, 1, 0, 7, 4, 9, 2, 1, 6, 7, 2, 0, 0, 7, 4, 6, 3, 7, 5, 7, 4, 9, 8, 1, 0, 6, 7, 9, 6, 9
Offset: 0

Views

Author

R. J. Mathar, Jul 19 2012

Keywords

Comments

Equals the alternating sum over (-1)^(k+1)*H_k^(2)/(k+1)^2, where H_k^(2) is the harmonic sum over inverse squares, H_k^(2) = sum_{t=1..k} 1/t^2 = 1, 5/4, 49/36, 205/144, 5269/3600,..., see A007406. The sum over H_k^(2)/(k+1)^2, over the absolute values, is Pi^4/120 = 0.811742425283353...

Examples

			0.162654667397420080...
		

Programs

  • Maple
    a099218 := polylog(4,1/2) ;
    -4*a099218+13*Pi^4/288-7/2*Zeta(3)*log(2)+Pi^2/6*(log(2))^2-(log(2))^4/6 ;
    evalf(%) ;
  • Mathematica
    NSum[(-1)^(k + 1)*HarmonicNumber[k, 2]/(k + 1)^2, {k, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> 110] // RealDigits[#, 10, 105] & // First (* or, from formula: *) 13*Pi^4/288 + 1/6*Pi^2*Log[2]^2 - 1/6*Log[2]*(Log[2]^3 + 21*Zeta[3]) - 4*PolyLog[4, 1/2] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    13*Pi^4/288 + 1/6*Pi^2*log(2)^2 - 1/6*log(2)*(log(2)^3 + 21*zeta(3)) - 4*polylog(4, 1/2) \\ Charles R Greathouse IV, Jul 18 2014

Formula

Equals -4*A099218 +13*Pi^4/288 -7*A002117*log(2)/2+log^2(2)*(Pi^2-log^2(2))/6.

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A255008 Array T(n,k) read by ascending antidiagonals, where T(n,k) is the numerator of polygamma(n, 1) - polygamma(n, k).

Original entry on oeis.org

0, 0, -1, 0, 1, -3, 0, -2, 5, -11, 0, 6, -9, 49, -25, 0, -24, 51, -251, 205, -137, 0, 120, -99, 1393, -2035, 5269, -49, 0, -720, 975, -8051, 22369, -256103, 5369, -363, 0, 5040, -5805, 237245, -257875, 14001361, -28567, 266681, -761, 0, -40320
Offset: 0

Views

Author

Jean-François Alcover, Feb 12 2015

Keywords

Comments

Up to signs, row n=0 is A001008/A002805, row n=1 is A007406/A007407 and column k=1 is n!.

Examples

			Array of fractions begin:
0,  -1,  -3/2,       -11/6,          -25/12,               -137/60, ...
0,   1,   5/4,       49/36,         205/144,             5269/3600, ...
0,  -2,  -9/4,    -251/108,       -2035/864,        -256103/108000, ...
0,   6,  51/8,    1393/216,      22369/3456,      14001361/2160000, ...
0, -24, -99/4,   -8051/324,   -257875/10368,   -806108207/32400000, ...
0, 120, 975/8, 237245/1944, 15187325/124416, 47463376609/388800000, ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n+1)*n!*HarmonicNumber[k-1, n+1] // Numerator; Table[T[n-k, k], {n, 0, 10}, {k, 1, n}] // Flatten

Formula

Fraction giving T(n,k) = polygamma(n, 1) - polygamma(n, k) = (-1)^(n+1)*n! * sum_{j=1..k-1} 1/j^(n+1) = (-1)^(n+1)*n!*H(k-1, n+1), where H(n,r) gives the n-th harmonic number of order r.

A255009 Array T(n,k) read by ascending antidiagonals, where T(n,k) is the denominator of polygamma(n, 1) - polygamma(n, k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 4, 36, 12, 1, 1, 8, 108, 144, 60, 1, 1, 4, 216, 864, 3600, 20, 1, 1, 8, 324, 3456, 108000, 3600, 140, 1, 1, 8, 1944, 10368, 2160000, 12000, 176400, 280, 1, 1, 16, 1944, 124416, 32400000, 2160000, 4116000
Offset: 0

Views

Author

Jean-François Alcover, Feb 12 2015

Keywords

Comments

See A255008.

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n+1)*n!*HarmonicNumber[k-1, n+1] // Denominator; Table[T[n-k, k], {n, 0, 10}, {k, 1, n}] // Flatten

A276487 Denominator of Sum_{k=1..n} 1/k^n.

Original entry on oeis.org

1, 4, 216, 20736, 777600000, 46656000000, 768464444160000000, 247875891108249600000000, 4098310578334288576512000000000, 413109706296096288512409600000000, 7425496288284402957501110551810198732800000000000
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Comments

Also denominator of zeta(n) - Hurwitz zeta(n,n+1), where zeta(s) is the Riemann zeta function and Hurwitz zeta(s,a) is the Hurwitz zeta function.
Sum_{k>=1} 1/k^n = zeta(n).

Examples

			1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ...
a(3) = 216, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216.
		

Crossrefs

Cf. A001008, A002805, A007406, A007407, A031971, A276485 (numerators).

Programs

  • Maple
    A276487:=n->denom(add(1/k^n, k=1..n)): seq(A276487(n), n=1..12); # Wesley Ivan Hurt, Sep 07 2016
  • Mathematica
    Table[Denominator[HarmonicNumber[n, n]], {n, 1, 11}]
  • PARI
    a(n) = denominator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016
Previous Showing 41-50 of 80 results. Next