cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A111354 Numbers n such that the numerator of Sum_{i=1..n} (1/i^2), in reduced form, is prime.

Original entry on oeis.org

2, 7, 13, 19, 121, 188, 252, 368, 605, 745, 1085, 1127, 1406, 1743, 1774, 2042, 2087, 2936, 3196, 3207, 3457, 4045, 7584, 10307, 12603, 12632, 14438, 14526, 14641, 15662, 15950, 16261, 18084, 18937, 19676, 40984, 45531, 46009, 48292, 48590
Offset: 1

Views

Author

Ryan Propper, Nov 05 2005

Keywords

Comments

Numbers n such that A007406(n) is prime.
Some of the larger entries may only correspond to probable primes.
A007406(n) are the Wolstenholme numbers: numerator of Sum 1/k^2, k = 1..n. Primes in A007406(n) are listed in A123751(n) = A007406(a(n)) = {5,266681,40799043101,86364397717734821,...}.
For prime p>3, Wolstenholme's theorem says that p divides A007406(p-1). Hence n+1 cannot be prime for any n>2 in this sequence. - 12 more terms from T. D. Noe, Nov 11 2005
No other n<50000. All n<=1406 yield provable primes. - T. D. Noe, Mar 08 2006

Examples

			A007406(n) begins {1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141,...}.
Thus a(1) = 2 because A007406(2) = 5 is prime but A007406(1) = 1 is not prime.
a(2) = 7 because A007406(7) = 266681 is prime but all A007406(k) are composite for 2 < k < 7.
		

Crossrefs

Cf. A007406 (numerator of Sum_{i=1..n} (1/i^2)).

Programs

  • Mathematica
    s = 0; Do[s += 1/n^2; If[PrimeQ[Numerator[s]], Print[n]], {n, 1, 10^4}]
    Module[{nn=10400,t},t=Accumulate[1/Range[nn]^2];Select[Thread[{Range[nn],Numerator[t]}],PrimeQ[#[[2]]]&]][[;;,1]] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, May 18 2025 *)

Extensions

12 more terms from T. D. Noe, Nov 11 2005
More terms from T. D. Noe, Mar 08 2006
Additional comments from Alexander Adamchuk, Oct 11 2006
Edited by N. J. A. Sloane, Nov 11 2006

A120286 Numerator of 1/n^2 + 2/(n-1)^2 + 3/(n-2)^2 +...+ (n-1)/2^2 + n.

Original entry on oeis.org

1, 9, 65, 725, 3899, 28763, 419017, 864669, 7981633, 3586319, 200763407, 2649665993, 34899471137, 176508049513, 356606957297, 12234391348253, 209672027529221, 4012917216669239, 15350275129353301, 15443118015171841
Offset: 1

Views

Author

Alexander Adamchuk, Jul 07 2006

Keywords

Comments

p^2 divides a(p-1) for prime p>2. p divides a(p-2) for prime p>3.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[Sum[1/i^2,{i,1,k}],{k,1,n}],{n,1,30}]]
    Table[-EulerGamma + HarmonicNumber[1 + n, 2] + n*HarmonicNumber[1 + n, 2] - PolyGamma[0, 2 + n], {n, 1, 20}] // Numerator (* Vaclav Kotesovec, May 02 2024 *)
  • Python
    from fractions import Fraction
    def A120286(n): return sum(Fraction(n-i+1,i**2) for i in range(1,n+1)).numerator # Chai Wah Wu, May 01 2024

Formula

a(n) = numerator[Sum[Sum[1/i^2,{i,1,k}],{k,1,n}]].

A123751 Primes in A007406.

Original entry on oeis.org

5, 266681, 40799043101, 86364397717734821, 36190908596780862323291147613117849902036356128879432564211412588793094572280300268379995976006474252029, 334279880945246012373031736295774418479420559664800307123320901500922509788908032831003901108510816091067151027837158805812525361841612048446489305085140033
Offset: 1

Views

Author

Alexander Adamchuk, Oct 11 2006

Keywords

Comments

A007406 lists the Wolstenholme numbers.
Numbers k such that A007406(k) is prime are listed in A111354.

Examples

			A007406 begins {1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141, ...}.
Thus a(1) = 5 because A007406(2) = 5 is prime but A007406(1) = 1 is not prime.
a(2) = 266681 because A007406(7) = 266681 is prime but all A007406(k) are composite for 2 < k < 7.
		

Crossrefs

Programs

  • Mathematica
    Do[f=Numerator[Sum[1/i^2,{i,1,n}]]; If[PrimeQ[f],Print[{n,f}]],{n,1,250}]

Formula

a(n) = A007406(A111354(n)).

A163928 Numerators of the higher order exponential integral constants alpha(2,n).

Original entry on oeis.org

0, 1, 21, 1897, 32197, 20881861, 7139587, 17462165587, 283355376967, 69621962857381, 70246946681461, 1036088178214798501, 1042504974775473001, 29931734181763981573561, 4295332813075795410223, 4312254507400142830831
Offset: 1

Views

Author

Johannes W. Meijer & Nico Baken, Aug 13 2009, Aug 17 2009

Keywords

Comments

See A163927 for information about the alpha(k,n) constants.
Apart from a difference of offset, alpha(2,n) appears to be the multiple harmonic (star) sum Sum_{j = 1..n} 1/j^2 Sum_{k = 1..j} 1/k^2, which has the initial values [1, 21/16, 1897/1296, 32197/20736, 20881861/12960000, 7139587/4320000, ...]. - Peter Bala, Jan 31 2019

Examples

			alpha(k=2,n=1) = 0, alpha(k=2,2) = 1, alpha(k=2,3) = 21/16, alpha(k=2,4) = 1897/1296.
		

Crossrefs

Cf. A163929 (denominators).
Cf. A163927 (alpha(k,n)) and A090998 (gamma(k,n)).

Programs

  • Maple
    nmax:=17; rowk:=2; kmax:=nmax: k:=0: for n from 1 to nmax do alpha(k,n):=1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k,n) := (1/k)*sum(sum(p^(-2*(k-i)),p=0..n-1)*alpha(i, n),i=0..k-1) od; od: seq(alpha(rowk, n),n=1..nmax);

Formula

alpha(k,n) = (1/k)*Sum_{i=0..k-1} (Sum_{p=0..n-1} p^(-2*(k-i))*alpha(i, n) with alpha(0,n) = 1, with k = 2 and n >= 1. alpha(1,n) = A007406(n-1)/A007407(n-1) for n >= 2.

A276485 Numerator of Sum_{k=1..n} 1/k^n.

Original entry on oeis.org

1, 5, 251, 22369, 806108207, 47464376609, 774879868932307123, 248886558707571775009601, 4106541588424891370931874221019, 413520574906423083987893722912609, 7429165883912264897181708263009894640627544300697
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 05 2016

Keywords

Comments

Also numerators of zeta(n) - Hurwitz zeta(n,n+1), where zeta(s) is the Riemann zeta function and Hurwitz zeta(s,a) is the Hurwitz zeta function.
Sum_{k>=1} 1/k^n = zeta(n).

Examples

			1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ...
a(3) = 251, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216.
		

Crossrefs

Cf. A001008, A002805, A007406, A007407, A031971, A276487 (denominators).

Programs

  • Mathematica
    Table[Numerator[HarmonicNumber[n, n]], {n, 1, 11}]
  • PARI
    a(n) = numerator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016

A345651 Fourth column of A008296.

Original entry on oeis.org

1, 10, 25, -35, 49, 0, -820, 9020, -87164, 859144, -8965320, 100136400, -1199838576, 15406135488, -211479420096, 3094582896000, -48129022468224, 793274283938304, -13818265424460288, 253731538514893824, -4899371564756837376, 99261476593521868800
Offset: 4

Views

Author

Luca Onnis, Aug 26 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
          (n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..28);  # Alois P. Heinz, Aug 26 2021
    # alternative
    seq(A008296(n,4),n=4..70) ; # R. J. Mathar, Sep 15 2021
  • Mathematica
    a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
    a[n_, n_] = 1;
    a[n_, k_] := a[n, k] = (n - 1) a[n - 2, k - 1] +
        a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
    Flatten[Table[N[a[n + 4, 4], 10], {n, 1, 400}]]
  • PARI
    a(n) = sum(m=4, n, binomial(m, 4)*4^(m-4)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021

Formula

a(n) = A008296(n,4).
a(n) = (-1)^n*(4*H(n-5,1)^3 + 8*H(n-5,3) - 12*H(n-5,2)*H(n-5,1) - 25*H(n-5,1)^2 + 25*H(n-5,2) + 35*H(n-5,1) - 10)*(n-5)! for n >= 5 where H(n,1) = Sum_{j=1..n} 1/j is the n-th harmonic number, H(n,2) = Sum_{j=1..n} 1/j^2 and H(n,3) = Sum_{j=1..n} 1/j^3.
a(n) = Sum_{m=4..n} binomial(m,4) * 4^(m-4) * Stirling1(n,m). - Alois P. Heinz, Aug 26 2021
Conjecture: D-finite with recurrence a(n) +2*(2*n-13)*a(n-1) +(6*n^2-84*n+295)*a(n-2) +(2*n-15)*(2*n^2-30*n+113)*a(n-3) +(n-8)^4*a(n-4)=0. - R. J. Mathar, Sep 15 2021

A347276 Third column of A008296.

Original entry on oeis.org

1, 6, 5, -15, 49, -196, 944, -5340, 34716, -254760, 2078856, -18620784, 180973584, -1887504768, 20887922304, -242111586816, 2889841121280, -34586897978880, 393722260047360, -3659128846433280, 5687630494110720, 1137542166526464000, -49644151627682304000
Offset: 3

Views

Author

Luca Onnis, Aug 25 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
          (n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..30);  # Alois P. Heinz, Aug 25 2021
  • Mathematica
    a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
    a[n_, n_] = 1;
    a[n_, k_] :=  a[n, k] = (n - 1) a[n - 2, k - 1] +
        a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
    Flatten[Table[a[n + 3, 3], {n, 0, 30}]]
  • PARI
    a(n) = sum(m=3, n, binomial(m, 3)*3^(m-3)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021

Formula

a(n) = A008296(n,3).
a(n) = (-1)^n*(3*H(n-4,1)^2 - 3*H(n-4,2) - 11*H(n-4,1) + 6)*(n-4)! for n >= 4, where H(n,1) = Sum_{j=1..n} 1/j = A001008(n)/A002805(n) is the n-th harmonic number and H(n,2) = Sum_{j=1..n} 1/j^2 = A007406(n)/A007407(n).
a(n) = Sum_{m=3..n} binomial(m,3) * 3^(m-3) * Stirling1(n,m). - Alois P. Heinz, Aug 26 2021

A060944 a(n) = n!^2 * Sum_{k=1..n} Sum_{j=1..k} 1/j^2.

Original entry on oeis.org

1, 9, 130, 2900, 93576, 4141872, 241353792, 17929776384, 1655071418880, 185914776960000, 24978180045312000, 3955930130221056000, 729464836964806656000, 154952762244805582848000, 37566943754471090749440000, 10310706109241121091092480000
Offset: 1

Views

Author

Leroy Quet, May 07 2001

Keywords

Comments

Sum of generalized harmonic numbers squared multiplied by (n!)^2. agenh(n) = Sum_{k=1..n} HarmonicNumber(k, 2), where HarmonicNumber(n, j) = Sum_{k = 1..n} 1/k^j. - Alexander Adamchuk, Oct 27 2004

Examples

			a(3) = 6^2 *(1 + (1 + 1/2^2) + (1 + 1/2^2 + 1/3^2)) = 130.
		

Crossrefs

Programs

  • Magma
    [(Factorial(n))^2*(&+[(1+j)/(n-j)^2: j in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Apr 09 2021
    
  • Maple
    A060944:= n-> (n!)^2*add((1+j)/(n-j)^2, j=0..n-1); seq(A060944(n), n=1..15); # G. C. Greubel, Apr 09 2021
  • Mathematica
    Table[(n!)^2*Sum[(k+1)/(n-k)^2, {k, 0, n-1}], {n, 1, 10}]
  • PARI
    a(n)={n!^2 * sum(k=1, n, sum(j=1, k, 1/j^2))} \\ Harry J. Smith, Jul 15 2009
    
  • Sage
    [(factorial(n))^2*sum((1+j)/(n-j)^2 for j in (0..n-1)) for n in (1..15)] # G. C. Greubel, Apr 09 2021

Formula

From Alexander Adamchuk, Oct 27 2004: (Start)
a(n) = (n!)^2 * Sum_{k=0..n-1} (k+1)/(n-k)^2.
a(n) = (n!)^2 * Sum_{k=1..n} HarmonicNumber(k, 2), where HarmonicNumber(k, 2) = A007406(k) / A007407(k). (End)
Sum_{n>=1} a(n) * x^n / (n!)^2 = polylog(2,x) / (1 - x)^2. - Ilya Gutkovskiy, Jul 15 2020

A068584 Numbers k such that the denominator of (Sum_{j=1..k} 1/j)^2 equals the denominator of Sum_{j=1..k} 1/j^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 15, 16, 17, 28, 29, 30, 31, 32, 49, 91, 92, 93, 94, 95, 96, 97, 98, 99, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 243, 244, 245, 246, 247, 248, 249, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984
Offset: 1

Views

Author

Benoit Cloitre, Mar 27 2002

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; sum1 = sum2 = 0; Do[sum1 += 1/j; sum2 += 1/j^2; If[Denominator[sum1^2] == Denominator[sum2], AppendTo[s, j]], {j, 1, 1000}]; s (* Amiram Eldar, Feb 18 2021 *)
  • PARI
    isok(k) = denominator(sum(j=1, k, 1/j)^2) == denominator(sum(j=1, k, 1/j^2)); \\ Michel Marcus, Feb 15 2021

Formula

Numbers k such that A002805(k)^2 = A007407(k).

A073526 Denominator of Sum_{k=1..n} 1/k^2 is a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 49, 75, 76, 77, 91, 92, 93, 94, 95, 96, 97, 98, 99, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 153, 154, 155, 205, 206, 207, 208, 209, 210, 211
Offset: 1

Views

Author

N. J. A. Sloane, Aug 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[300],IntegerQ[Sqrt[Denominator[Sum[1/k^2,{k,#}]]]]&] (* Harvey P. Dale, Mar 28 2012 *)

Formula

{n: A007407(n) in A000290} . - R. J. Mathar, Oct 03 2014

Extensions

More terms from Matthew Conroy, Sep 09 2002
Previous Showing 31-40 of 52 results. Next