cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A029883 First differences of Thue-Morse sequence A001285.

Original entry on oeis.org

1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 0, 1, -1, 1, 0, -1, 0, 1, 0, -1, 1, -1, 0, 1, 0, -1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Also first differences of {0,1} Thue-Morse sequence A010060.- N. J. A. Sloane, Jan 05 2021
Fixed point of the morphism a->abc, b->ac, c->b, with a = 1, b = 0, c = -1, starting with a(1) = 1. - Philippe Deléham
From Thomas Anton, Sep 22 2020: (Start)
This sequence, interpreted as an infinite word, is squarefree.
Let & represent concatenation. For a word w of integers, let -w be the same word with each symbol negated. Then, starting with the empty word, this sequence can be obtained by iteratively applying the transformation T(w) = w & 1 & -w & 0 & -w & -1 & w. (End)

Crossrefs

Apart from signs, same as A035263. Cf. A001285, A010060, A036554, A091785, A091855.
a(n+1) = A036577(n) - 1 = A036585(n) - 2.

Programs

  • Mathematica
    Nest[ Function[ l, {Flatten[(l /. {0 -> {1, -1}, 1 -> {1, 0, -1}, -1 -> {0}})]}], {1}, 7] (* Robert G. Wilson v, Feb 26 2005 *)
    ThueMorse /@ Range[0, 105] // Differences (* Jean-François Alcover, Oct 15 2019 *)
  • PARI
    a(n)=if(n<1||valuation(n,2)%2,0,-(-1)^subst(Pol(binary(n)),x,1)) /* Michael Somos, Jul 08 2004 */
    
  • PARI
    a(n)=hammingweight(n)%2-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    def A029883(n): return (bin(n).count('1')&1)-(bin(n-1).count('1')&1) # Chai Wah Wu, Mar 03 2023

Formula

Recurrence: a(4*n) = a(n), a(4*n+1) = a(2*n+1), a(4*n+2) = 0, a(4*n+3) = -a(2*n+1), starting a(1) = 1.
a(n) = 2 - A007413(n). a(A036554(n)) = 0; a(A091785(n)) = -1; a(A091855(n)) = 1. - Philippe Deléham, Mar 20 2004
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = -v+w+u^2-v^2+2*w^2-2*u*w. - Michael Somos, Jul 08 2004

Extensions

Edited by Ralf Stephan, Dec 09 2004

A003156 A self-generating sequence (see Comments for definition).

Original entry on oeis.org

1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 33, 36, 37, 38, 41, 44, 47, 48, 49, 52, 55, 58, 59, 60, 63, 64, 65, 68, 69, 70, 73, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 97, 100, 101, 102, 105, 106, 107, 110, 111, 112, 115, 118, 121, 122, 123, 126, 129, 132
Offset: 1

Views

Author

Keywords

Comments

From N. J. A. Sloane, Dec 26 2020: (Start)
The best definitions of the triple [this sequence, A003157, A003158] are as the rows a(n), b(n), c(n) of the table:
n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
a: 1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, ...
b: 3, 8, 11, 14, 19, 24, 29, 32, 35, 40, 43, 46, ...
c: 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, 42, 45, ...
where a(1)=1, b(1)=3, c(1)=2, and thereafter
a(n) = mex{a(i), b(i), c(i), i
b(n) = a(n) + 2*n,
c(n) = b(n) - 1.
Then a,b,c form a partition of the positive integers.
Note that there is another triple of sequences (A003144, A003145, A003146) also called a, b, c and also a partition of the positive integers, in a different paper by the same authors (Carlitz-Scovelle-Hoggatt) in the same volume of the same journal.
(End)
a(n) is the number of ones before the n-th zero in the Feigenbaum sequence A035263. - Philippe Deléham, Mar 27 2004
Number of odd numbers before the n-th even number in A007413, A007913, A001511, A029883, A033485, A035263, A036585, A065882, A065883, A088172, A092412. - Philippe Deléham, Apr 03 2004
Indices of a in the sequence closed under a -> abc, b -> a, c -> a, starting with a(1) = a; see A092606 where a = 0, b = 2, c = 1. - Philippe Deléham, Apr 12 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    following Deléham
    a003156 n = a003156_list !! (n-1)
    a003156_list = scanl1 (+) a080426_list
    -- Reinhard Zumkeller, Oct 27 2014
    
  • Maple
    a:= proc(n) global l; while nops(l) [1, 3$d, 1][], l) od; `if` (n=1, 1, a(n-1) +l[n]) end: l:= [1]: seq (a(n), n=1..80); # Alois P. Heinz, Oct 31 2009
  • Mathematica
    Position[Nest[Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 7], 0] // Flatten (* Jean-François Alcover, Mar 14 2014 *)
  • Python
    def A003156(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)-n # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A079523(n) - n + 1 = A003157(n) - 2n = A003158(n) - 2n + 1. - Philippe Deléham, Feb 28 2004
a(n) = A036554(n) - n = A072939(n) - n - 1 = 2*A003159(n) - n. - Philippe Deléham, Apr 10 2004
a(n) = Sum_{k = 1..n} A080426(k). - Philippe Deléham, Apr 16 2004

Extensions

More terms from Alois P. Heinz, Oct 31 2009
Incorrect equation removed from formula by Peter Munn, Dec 11 2020

A036585 Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.

Original entry on oeis.org

3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1
Offset: 1

Keywords

Comments

First differences of A001969. Observed by Franklin T. Adams-Watters, proved by Max Alekseyev, Aug 30 2006

References

  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 26.

Crossrefs

Programs

  • Haskell
    a036585 n = a036585_list !! (n-1)
    a036585_list = 3 : concat (map f a036585_list)
    where f 1 = [1,2,3]; f 2 = [1,3]; f 3 = [2]
    -- Reinhard Zumkeller, Oct 31 2012
    
  • Mathematica
    Differences[ThueMorse[Range[0, 100]]] + 2 (* Paolo Xausa, Oct 25 2024 *)
  • PARI
    a(n)=if(n<1 || valuation(n,2)%2,2,2-(-1)^subst(Pol(binary(n)),x,1))
    
  • Python
    def A036585(n): return 2+(n.bit_count()&1)-((n-1).bit_count()&1) # Chai Wah Wu, Mar 03 2023

Formula

a(n) = A001969(n+1) - A001969(n). - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A029883(n) + 2 = A036577(n) + 1.

A036580 Ternary Thue-Morse sequence: closed under a->abc, b->ac, c->b.

Original entry on oeis.org

0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2
Offset: 0

Keywords

Comments

0 is a, 1 is b and 2 is c. - Robert G. Wilson v, Jul 30 2018

References

  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 26.

Crossrefs

A007413(n+1) - 1.
See A036577 for another version.

Programs

  • Mathematica
    Nest[Flatten[# /. {0 -> {0, 1, 2}, 1 -> {0, 2}, 2 -> {1}}] &, {1}, 7] // Most (* Robert G. Wilson v, Jul 30 2018, corrected by Paolo Xausa, Jul 21 2025 *)
    1 - Differences[ThueMorse[Range[0,100]]] (* Paolo Xausa, Jul 21 2025 *)

A076826 a(n) = 2*(Sum_{k=0..n} A010060(k)) - n, where A010060 is a Thue-Morse sequence.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1
Offset: 0

Author

Benoit Cloitre, Nov 24 2002

Keywords

Comments

Is there any interesting sequence b(n) such that b(n) mod 3 = a(n)?
Fixed point of the morphism 0->012; 1->1; 2->210 starting with a(0) = 0. - Philippe Deléham, Mar 14 2004

Crossrefs

Cf. A000069 (odious numbers), A001969 (evil numbers).

Programs

  • Mathematica
    Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 1, 2}, 1 -> {1}, 2 -> {2, 1, 0}}) ]}], {0}, 6] (* Robert G. Wilson v, Mar 03 2005 *)
    cnt=0; Join[{0}, Table[If[EvenQ[Count[IntegerDigits[n,2],1]], cnt--, cnt++ ]; cnt, {n,150}]] (* T. D. Noe, Jun 14 2007 *)
  • PARI
    a(n)=if(n<0,0,2*sum(k=1,n,subst(Pol(binary(k)),x,1)%2)-n)
    
  • PARI
    a(n)=if(n<1,0,if(n%2,1,if(n/2%2,2-a(n\4*2),a(n/2))))
    
  • Python
    def A076826(n): return 1 if n&1 else (n.bit_count()&1)<<1 # Chai Wah Wu, Mar 01 2023

Formula

a(2k+1) = 1, a(4k) = a(2k), a(4k+2) = 2-a(2k). - Michael Somos, Dec 04 2002
a(2n) = 2*A010060(n); a(2n+1) = 1. - Benoit Cloitre, Mar 08 2004
a(n) = 2*(A026430(n+1) - 1) mod 3. - Philippe Deléham, Mar 28 2004
a(n) = (number of odious numbers <= n) - (number of evil numbers <= n) for n>0. - T. D. Noe, Jun 14 2007
a(n) = 2*A115384(n) - n. - Vladimir Shevelev, May 31 2009
a(n) = 0 if n and A000120(n) are even; a(n) = 2 if n is even but A000120(n) is odd; a(n) = 1 if n is odd. - Vladimir Shevelev, May 31 2009

A091785 Evil numbers (see A001969) in A003159.

Original entry on oeis.org

3, 5, 9, 12, 15, 17, 20, 23, 27, 29, 33, 36, 39, 43, 45, 48, 51, 53, 57, 60, 63, 65, 68, 71, 75, 77, 80, 83, 85, 89, 92, 95, 99, 101, 105, 108, 111, 113, 116, 119, 123, 125, 129, 132, 135, 139, 141, 144, 147, 149, 153, 156, 159, 163, 165, 169, 172, 175, 177, 180, 183
Offset: 1

Author

Philippe Deléham, Mar 16 2004

Keywords

Comments

Also n such that A033485(n) == 3 (mod 4); see A007413.
Also n such that A029883(n-1) = -1, A036577(n-1) = 0, A036585(n-1) = 1. - Philippe Deléham, Mar 25 2004
The number of odd numbers before the n-th even number in this sequence is a(n). - Philippe Deléham, Mar 27 2004
Numbers n such that {A010060(n-1), A010060(n)}={1,0} where A010060 is the Thue-Morse sequence. - Benoit Cloitre, Jun 16 2006

Programs

Formula

a(n) = A003159(2*n) = A036554(2*n)/2.
a(n) is asymptotic to 3*n. - Benoit Cloitre, Mar 22 2004
A050292(a(n)) = 2n. - Philippe Deléham, Mar 26 2004

Extensions

More terms from Benoit Cloitre, Mar 22 2004

A085794 Lexicographically earliest squarefree infinite ternary word.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 2, 0, 1
Offset: 0

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jul 24 2003; corrected Jul 25 2003

Keywords

Comments

Open Problem 1.10.2 in the Allouche & Shallit reference asks for a good alternate characterization of this sequence. (Is it morphic, if so for which morphism?)
The sequence cannot be constructed in a greedy way (without backtracking) choosing each a(n) simply such that the sequence is squarefree: After (0, 1, 0, 2, 0, 1) the greedy choice would be to append 0, but then one is stuck for the alphabet {0,1,2}. If the alphabet is infinite, this greedy procedure yields A007814. - M. F. Hasler, Nov 28 2019
We know that an infinite ternary squarefree word exists, namely the ternary Thue-Morse sequence A036580 = A007413(.+1) - 1. The space of squarefree words is closed (limit of a sequence of squarefree words is again squarefree, using e.g. topology induced by d(x,y) = Sum_{k>=0} |x_k - y_k|/3^k or exp(-min{k: x_k != y_k})) and compact, so the inf exists and is reached for some element. [Thanks to Jean-Paul Allouche.] - M. F. Hasler, Nov 29 2019
From Thomas Anton, May 01 2022: (Start)
A direct proof of this is as follows: as noted above we may obtain the sequence through a greedy algorithm with backtracking. This process eliminates as a prefix for any squarefree word, any word lexicographically earlier than an initial segment of this word. Since distinct words must have distinct prefixes of some length, any other squarefree word must be lexicographically later.
Additionally, it is not necessary to show that the inf exists since lexicographically ordered infinite words on a finite alphabet form a complete total ordering. (End)

Examples

			From _M. F. Hasler_, Nov 29 2019: (Start)
After a(0) = 0 one must have a(1) = 1 because 00 is not squarefree, i.e., it has a subsequence X = 0 such that XX = 00 is also a subsequence.
After (0,1) one has again a(2) = 0, but then a(3) must be different from 0 (to avoid 00) and from 1 to avoid XX with X = 01, so a(3) = 2.
Then again a(4) = 0 and a(5) = 1.
Now it looks that a(6) could be equal to 0, but with this choice, there would be no possible choice for a(7): all in {0, 1, 2} would produce a square subsequence, in the last case with X = 0102. Since 1 is also excluded, a(6) = 2 is the only possible choice.
A partial subsequence a(0..k) is correct if one can append the infinite ternary Thue-Morse word A036580 and the result is squarefree. (Sufficient but obviously not necessary condition, consider a(k) = A036580(0).) To ensure this, one needs only to check up to twice the length of the prefixed subsequence. (End)
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003, page 30.

Crossrefs

Programs

  • PARI
    A085794_upto(n,A)={ for(n=1+#A+!A,#A=Vec(A,n+2), while( A[n]==A[n-1], while( A[n]++>2, A[n]=0; n--)); for(L=2,(n-1)\2, A[n-L..n-1]!=A[n-2*L..n-L-1] || while(A[n]++>2, A[n]=0; n--) || !n-- || next(2))); A[^-1]} \\ Returns a(0..n). Optional arg allows to specify starting value(s). - M. F. Hasler, Nov 29 2019

Extensions

More terms from John W. Layman, May 18 2004
Changed b-file to an a-file. - N. J. A. Sloane, Mar 26 2019

A170823 An infinite word on the alphabet 1, 2, 3 by Bollobas.

Original entry on oeis.org

1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1
Offset: 0

Author

N. J. A. Sloane, Dec 25 2009

Keywords

Comments

A concatenation of blocks u_k, k >= 0, where u_k has length 5^k. The sequence is defined recursively - see the Maple code.
From Kevin Ryde, Aug 11 2020: (Start)
Bollobás gives this sequence intending it to be a squarefree ternary word, where squarefree means nowhere a repeat w w for a block w of any length. However, squares do occur in it, for example a(18) onwards is 3212 3212, or a(19) onwards is 2123 2123.
In Bollobás' proof, the signs sequence is A337004. For blocks w of length l=4, the second signs subsequence presented (which should stop at length 7), does in fact occur, as does one other.
- - + + - - + \ two l=4 signs subsequences
- + + - - + + / in A337004 making squares here
All else in the argument holds, and in particular the "peaks" reduction means the only squares are lengths l = 4*5^k.
Zolotov shows this word is cubefree, and weakly squarefree (no x w w x where x is a single symbol and w is a block, possibly empty). However uniform cyclic squarefree must wait for Leech's order 13 morphism in A337005.
(End)

References

  • B. Bollobas, The Art of Mathematics: Coffee Time in Memphis, Cambridge, 2006, pp. 226-228.

Crossrefs

Cf. A337004 (first differences as +1,-1).

Programs

  • Maple
    a:=[1,2,3,2,1]; b:=[2,3,1,3,2]; c:=[3,1,2,1,3]; S:=[1];
    for m from 1 to 6 do S:=subs({1=a[],2=b[],3=c[]},S); od: S;
  • PARI
    my(table=[0,1,2,1,0]); a(n) = my(v=digits(n,5)); sum(i=1,#v,table[v[i]+1]) %3+1; \\ Kevin Ryde, Jul 31 2020

A285951 Positions of 1's in A285949; complement of A285950.

Original entry on oeis.org

2, 6, 9, 11, 15, 17, 20, 24, 27, 29, 32, 36, 38, 42, 45, 47, 51, 53, 56, 60, 62, 66, 69, 71, 74, 78, 81, 83, 87, 89, 92, 96, 99, 101, 104, 108, 110, 114, 117, 119, 122, 126, 129, 131, 135, 137, 140, 144, 146, 150, 153, 155, 159, 161, 164, 168, 171, 173, 176
Offset: 1

Author

Clark Kimberling, May 02 2017

Keywords

Comments

Conjecture: 3n - a(n) is in {0, 1} for all n >= 1.
From Michel Dekking, Sep 03 2019: (Start)
Proof of the conjecture by Kimberling: more is true. Here follows a proof of the formula below. Let T be the transform T(01)=0, T(1)=0.
Consider the return word structure of A285949 for the word 1:
A285949 = 0|1000|100|10|1000|10|100| ....
[See Justin & Vuillon (2000) for definition of return word. - N. J. A. Sloane, Sep 23 2019]
The three return words are u:=10, v:=100 and w:=1000. These words uniquely correspond to the conjugated three words u'=01, v'=010, w'=0100 in A285949, which are the unique images u'=T(0), v'=T(01) and w'=T(011) of the words 0, 01 and 011 in the Thue-Morse word A010060. The images of these three words under the Thue-Morse morphism 0->01, 1->10 are 01, 0110 and 011010, and we have
T(01)=010, T(0110)=010001, T(011010)=010001001.
Shifting by 1 in A285949, these correspond uniquely to the conjugated words 100, 100010, and 100010010. It follows that the Thue-Morse morphism induces the morphism u->v, v->wu, w->wvu on the return words.
This morphism is modulo a change of alphabet equal to the ternary Thue-Morse morphism with fixed point A007413.
Note that on the alphabet {4,3,2} of the respective lengths of w, v, and u we obtain the sequence (a(n+1)-a(n)) = 4,3,2,4,2,3,4,3,2,... of first differences of the positions of the 1's in A285949.
To prove the formula a(n) = A010060(n)+ 3n-1, it suffices to show that a(n+1)-a(n) = A010060(n+1)-A010060(n)+3.
That this indeed is true: see the Comments of A029883, the first differences of the standard form of the Thue-Morse sequence A001285.
(End)

Examples

			As a word, A285949 = 0100010010100010100100010..., in which 1 is in positions  2,6,9,11,...
		

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 7]  (* Thue-Morse, A010060 *)
    w = StringJoin[Map[ToString, s]]
    w1 = StringReplace[w, {"0" -> "01", "1" -> "0"}]  (* A284949, word *)
    st = ToCharacterCode[w1] - 48 (* A284949, sequence *)
    Flatten[Position[st, 0]] (* A285950 *)
    Flatten[Position[st, 1]] (* A285951 *)
  • Python
    def A285951(n): return ((n-1).bit_count()&1)+3*n-1 # Chai Wah Wu, May 21 2025

Formula

a(n) = A010060(n) + 3n-1. - Michel Dekking, Sep 03 2019

A194923 The (finite) list of ternary abelian squarefree words.

Original entry on oeis.org

0, 1, 2, 0, 1, 0, 2, 1, 0, 1, 2, 2, 0, 2, 1, 0, 1, 0, 0, 1, 2, 0, 2, 0, 0, 2, 1, 1, 0, 1, 1, 0, 2, 1, 2, 0, 1, 2, 1, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 0, 0, 2, 1, 2, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 1, 2, 0, 1, 1, 2, 0, 2, 1, 2, 1, 0, 2, 0, 1, 0, 2, 0
Offset: 1

Author

M. F. Hasler, Sep 04 2011, based on deleted sequence A138036 from Roger L. Bagula, May 02 2008

Keywords

Comments

Lexicographically ordered list of words of increasing length L=1,2,3,... over the alphabet {0,1,2}, excluding those which contain two adjacent subsequences with the same multiset of symbols regardless of internal order. E.g., 0,0 or 1,1 or 2,2 or 0,1,0,1 or 0,1,2,1,0,2, etc.
Peter Lawrence, Sep 06 2011: In other words, this is the sequence of all possible lists over the letters "0", "1", "2", such that within a list no two adjacent segments of any length contain the same multiset of symbols, first sorted by length of list, second lists of same length are sorted lexicographically. Recursively, to each list of length N create up to two lists of length N+1 by appending the two letters that are different from the last letter of the first list, and then check for and eliminate longer abelian squares; keeping all the lists sorted as in the previous description.
The number of sequences of the successive lengths are 3, 6, 12, 18, 30, 30, 18, for total row lengths of 3, 12, 36, 72,150, 180, 126.

Examples

			Starting with words of length 1, the allowed ones are:
{{0}, {1}, {2}};
{{0, 1}, {0, 2}, {1, 0}, {1, 2}, {2, 0}, {2, 1}};
{{0, 1, 0}, {0, 1, 2}, {0, 2, 0}, {0, 2, 1}, {1, 0, 1}, {1, 0, 2}, {1, 2, 0}, {1, 2, 1}, {2, 0, 1}, {2, 0, 2}, {2, 1, 0}, {2, 1, 2}};
{{0, 1,0, 2}, {0, 1, 2, 0}, {0, 1, 2, 1}, {0, 2, 0, 1}, {0, 2, 1, 0}, {0, 2, 1, 2}, {1, 0, 1, 2}, {1, 0, 2, 0}, {1, 0, 2, 1}, {1, 2, 0, 1}, {1, 2, 0, 2}, {1, 2, 1, 0}, {2, 0, 1, 0}, {2, 0, 1, 2}, {2, 0, 2, 1}, {2, 1, 0, 1}, {2, 1, 0, 2}, {2, 1, 2, 0}},
{{0, 1, 0, 2, 0}, {0, 1, 0, 2, 1}, {0, 1, 2, 0, 1}, {0, 1, 2, 0, 2}, {0, 1, 2, 1, 0}, {0, 2, 0,1, 0}, {0, 2, 0, 1, 2}, {0, 2, 1, 0, 1}, {0, 2, 1, 0,2}, {0, 2, 1, 2, 0}, {1, 0,1, 2, 0}, {1, 0, 1, 2, 1}, {1, 0, 2, 0, 1}, {1, 0, 2, 1, 0}, {1, 0, 2, 1, 2}, {1, 2, 0, 1, 0}, {1, 2, 0, 1, 2}, {1, 2, 0, 2, 1}, {1, 2, 1, 0, 1}, {1, 2, 1, 0, 2}, {2, 0,1, 0, 2}, {2, 0, 1, 2, 0}, {2, 0, 1, 2, 1}, {2, 0, 2,1, 0}, {2, 0, 2, 1, 2}, {2,1, 0, 1, 2}, {2, 1, 0, 2, 0}, {2, 1, 0, 2, 1}, {2, 1, 2, 0, 1}, {2, 1, 2, 0, 2}},
{{0, 1, 0, 2, 0, 1}, {0, 1, 0, 2, 1, 0}, {0, 1,0, 2, 1, 2}, {0, 1, 2, 0, 1, 0}, {0, 1, 2, 1, 0, 1}, {0, 2, 0, 1, 0, 2}, {0, 2, 0, 1, 2, 0}, {0, 2, 0, 1, 2, 1}, {0, 2, 1, 0, 2, 0}, {0, 2, 1, 2, 0, 2}, {1, 0, 1, 2, 0, 1}, {1, 0, 1, 2, 0, 2}, {1, 0, 1, 2, 1, 0}, {1, 0, 2, 0, 1, 0}, {1, 0, 2, 1, 0, 1}, {1, 2, 0, 1, 2, 1}, {1, 2, 0, 2, 1, 2}, {1, 2, 1, 0, 1, 2}, {1, 2, 1, 0, 2, 0}, {1, 2, 1, 0, 2, 1}, {2, 0, 1, 0, 2, 0}, {2, 0, 1, 2, 0, 2}, {2, 0, 2, 1, 0, 1}, {2, 0, 2, 1, 0, 2}, {2, 0, 2, 1, 2, 0}, {2, 1, 0, 1, 2, 1}, {2, 1, 0, 2, 1, 2}, {2, 1, 2, 0, 1, 0}, {2, 1, 2, 0, 1, 2}, {2, 1, 2, 0, 2, 1}},
{{0, 1, 0, 2, 0, 1, 0}, {0,1, 0, 2, 1, 0, 1}, {0, 1, 2, 1, 0, 1, 2}, {0, 2, 0, 1, 0, 2, 0}, {0, 2, 0, 1, 2, 0, 2}, {0, 2, 1, 2, 0, 2, 1}, {1, 0, 1, 2, 0, 1, 0}, {1, 0, 1, 2, 1, 0, 1}, {1, 0, 2, 0, 1, 0, 2}, {1, 2, 0, 2, 1, 2, 0}, {1, 2, 1, 0, 1, 2, 1}, {1, 2, 1, 0, 2, 1, 2}, {2, 0, 1, 0, 2, 0, 1}, {2, 0, 2,1, 0, 2, 0}, {2, 0, 2, 1, 2, 0, 2}, {2,1, 0, 1, 2, 1, 0}, {2, 1, 2, 0, 1, 2, 1}, {2, 1, 2, 0, 2, 1, 2}}
		

Programs

  • Mathematica
    f[n_, k_] := NestList[ DeleteCases[ Flatten[ Map[ Table[ Append[#, i - 1], {i, k}] &, #], 1], {_, u__, v__} /; Sort[{u}] == Sort[{v}]] &, {{}}, n]; f[7, 3] // Flatten (* initially from Roger L. Bagula and modified by Robert G. Wilson v, Sep 06 2011 *)

Extensions

Edited by Franklin T. Adams-Watters, Sep 05 2011
Previous Showing 11-20 of 24 results. Next