cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A130054 Inverse Moebius transform of A023900.

Original entry on oeis.org

1, 0, -1, -1, -3, 0, -5, -2, -3, 0, -9, 1, -11, 0, 3, -3, -15, 0, -17, 3, 5, 0, -21, 2, -7, 0, -5, 5, -27, 0, -29, -4, 9, 0, 15, 3, -35, 0, 11, 6, -39, 0, -41, 9, 9, 0, -45, 3, -11, 0, 15, 11, -51, 0, 27, 10, 17, 0, -57, -3, -59, 0, 15, -5, 33, 0, -65, 15, 21
Offset: 1

Views

Author

Gary W. Adamson, May 04 2007

Keywords

Comments

Multiplicative because A023900 is. - Andrew Howroyd, Aug 03 2018

Crossrefs

Programs

  • Magma
    [&+[d*MoebiusMu(d)*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 17 2019
  • Maple
    with(numtheory): seq(add(d*mobius(d)*tau(n/d), d in divisors(n)), n=1..60); # Ridouane Oudra, Nov 17 2019
  • Mathematica
    b[n_] := Sum[d MoebiusMu[d], {d, Divisors[n]}];
    a[n_] := Sum[b[n/d], {d, Divisors[n]}];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
    f[p_, e_] := 1-(p-1)*e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 23 2020 *)
  • PARI
    \\ here b(n) is A023900
    b(n)={sumdivmult(n, d, d*moebius(d))}
    a(n)={sumdiv(n, d, b(n/d))} \\ Andrew Howroyd, Aug 03 2018
    

Formula

A126988 * A130054 = d(n), A000005: (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ...).
a(n) = Sum_{d|n} A023900(n/d). - Andrew Howroyd, Aug 03 2018
a(n) = Sum_{d|n} d*mu(d)*tau(n/d). - Ridouane Oudra, Nov 17 2019
From Werner Schulte, Sep 06 2020: (Start)
Multiplicative with a(p^e) = 1 - (p-1) * e for prime p and e >= 0.
Dirichlet g.f.: (zeta(s))^2 / zeta(s-1).
Dirichlet convolution with A062570 equals A001511.
Dirichlet convolution with A018804 equals A000203.
Dirichlet inverse of A007431. (End)
a(n) = 1 - Sum_{k=1..n-1} a(gcd(n,k)). - Ilya Gutkovskiy, Nov 06 2020

Extensions

Name changed and terms a(11) and beyond from Andrew Howroyd, Aug 03 2018

A062790 Moebius transform of the cototient function A051953.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 3, 1, 6, 5, 4, 1, 6, 1, 5, 7, 10, 1, 6, 4, 12, 6, 7, 1, 8, 1, 8, 11, 16, 9, 8, 1, 18, 13, 10, 1, 12, 1, 11, 12, 22, 1, 12, 6, 20, 17, 13, 1, 18, 13, 14, 19, 28, 1, 13, 1, 30, 16, 16, 15, 20, 1, 17, 23, 24, 1, 16, 1, 36, 24, 19, 15, 24, 1, 20, 18, 40, 1, 19
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			n = 255, its divisors are {1,3,5,25,17,51,85,255}, A051953(255/d) = {127,21,19,1,7,1,1,0}, mu(d) = {1,-1,-1,1,-1,1,1,-1}, the sum is a(255) = 127-21-19+1-7+1+1+0 = 130-47 = 83.
		

Crossrefs

Programs

  • Mathematica
    Table[DirichletConvolve[MoebiusMu[n], n-EulerPhi[n], n, k], {k, 100}]  (* Amiram Eldar, Nov 24 2018 *)
  • PARI
    A062790(n)={
        local(a=0) ;
        fordiv(n,d,
            a += moebius(d)*(n/d-eulerphi(n/d)) ;
        ) ;
        return(a) ;
    } \\ R. J. Mathar, Mar 24 2012
    
  • PARI
    A062790(n) = sumdiv(n,d,moebius(n/d)*(d-eulerphi(d))); \\ Antti Karttunen, Nov 24 2018

Formula

a(n) = Sum f(n/d)*mu(d), where d divides n and f(x) = x-phi(x) = A051953(x).
a(n) = A056239(A318836(n)). - Antti Karttunen, Nov 24 2018
From Amiram Eldar, Dec 15 2023: (Start)
a(n) = A000010(n) - A007431(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 6/Pi^2 - 36/Pi^4. (End)

Extensions

OFFSET changed from 0 to 1 by Harry J. Smith, Aug 11 2009

A354058 Square array read by ascending antidiagonals: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 5, 0, 3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)). For the truncated version see A354061.
Each column is multiplicative.
The n-th rows contains entirely 0's if and only if n == 2 (mod 4).
For n !== 2 (mod 4), T(n,psi(n)) > T(n,k) if k is not divisible by psi(n).
Proof: this is true if n is a prime power (see the formula below). Now suppose that n = Product_{i=1..r} (p_i)^(e_i). Since n !== 2 (mod 4), (p_i)^(e_i) != 2, so T((p_i)^(e_i),psi((p_i)^(e_i))) > 0 for each i. If k is not divisible by psi(n), then it is not divisible by some psi((p_{i_0})^(e_{i_0})), so T(n,psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi(n)) = Product_{i=1..r} T((p_i)^(e_i),psi((p_i)^(e_i))) > T((p_{i_0})^(e_{i_0}),k) * Product_{i!=i_0} T((p_i)^(e_i),psi((p_i)^(e_i))) >= Product_{i=1..r} T((p_i)^(e_i),k) = T(n,k).

Examples

			  n/k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
   1   1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   3   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
   4   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
   5   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
   6   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   7   0  1  2  1  0  5  0  1  2  1  0  5  0  1  2  1  0  5  0  1
   8   0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2  0  2
   9   0  0  2  0  0  4  0  0  2  0  0  4  0  0  2  0  0  4  0  0
  10   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  11   0  1  0  1  4  1  0  1  0  9  0  1  0  1  4  1  0  1  0  9
  12   0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1
  13   0  1  2  3  0  5  0  3  2  1  0 11  0  1  2  3  0  5  0  3
  14   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  15   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
  16   0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4  0  0  0  4
  17   0  1  0  3  0  1  0  7  0  1  0  3  0  1  0 15  0  1  0  3
  18   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  19   0  1  2  1  0  5  0  1  8  1  0  5  0  1  2  1  0 17  0  1
  20   0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3  0  1  0  3
		

Crossrefs

k-th column: A114643 (k=2), A160498 (k=3), A160499 (k=4), A307380 (k=5), A307381 (k=6), A307382 (k=7), A329272 (k=8).
Moebius transform of A354057 applied to each column.
A354257 gives the smallest index for the nonzero terms in each row.
Cf. A007431.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022

A354061 Irregular table read by rows: T(n,k) is the number of degree-k primitive Dirichlet characters modulo n, 1 <= k <= psi(n), psi = A002322.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 2, 1, 0, 5, 0, 2, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 0, 1, 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 4, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Given n, T(n,k) only depends on gcd(k,psi(n)).
The n-th row contains entirely 0's if and only if n == 2 (mod 4).
If n !== 2 (mod 4), T(n,psi(n)) > T(n,k) for 1 <= k < psi(n).

Examples

			Table starts
n = 1: 1;
n = 2: 0;
n = 3: 0, 1;
n = 4: 0, 1;
n = 5: 0, 1, 0, 3;
n = 6: 0, 0;
n = 7: 0, 1, 2, 1, 0, 5;
n = 8: 0, 2;
n = 9: 0, 0, 2, 0, 0, 4;
n = 10: 0, 0, 0, 0;
n = 11: 0, 1, 0, 1, 4, 1, 0, 1, 0, 9;
n = 12: 0, 1;
n = 13: 0, 1, 2, 3, 0, 5, 0, 3, 2, 1, 0, 11;
n = 14: 0, 0, 0, 0, 0, 0;
n = 15: 0, 1, 0, 3;
n = 16: 0, 0, 0, 4;
n = 17: 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15;
n = 18: 0, 0, 0, 0, 0, 0;
n = 19: 0, 1, 2, 1, 0, 5, 0, 1, 8, 1, 0, 5, 0, 1, 2, 1, 0, 17;
n = 20: 0, 1, 0, 3;
...
		

Crossrefs

A354257 gives the smallest index for the nonzero terms in each row.

Programs

  • PARI
    b(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]));
    T(n,k) = sumdiv(n, d, moebius(n/d)*b(d,k))

Formula

For odd primes p: T(p,k) = gcd(p-1,k)-1, T(p^e,k*p^(e-1)) = p^(e-2)*(p-1)*gcd(k,p-1), T(p^e,k) = 0 if k is not divisible by p^(e-1). T(2,k) = 0, T(4,k) = 1 for even k and 0 for odd k, T(2^e,k) = 2^(e-2) if k is divisible by 2^(e-2) and 0 otherwise.
T(n,psi(n)) = A007431(n). - Jianing Song, May 24 2022

A318839 Restricted growth sequence transform of A318838.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 5, 6, 3, 7, 8, 9, 4, 10, 11, 12, 6, 13, 10, 14, 7, 15, 16, 17, 9, 18, 14, 19, 10, 20, 21, 22, 12, 23, 24, 25, 13, 26, 27, 28, 14, 29, 22, 30, 15, 31, 32, 33, 17, 34, 26, 35, 18, 36, 37, 38, 19, 39, 40, 41, 20, 42, 43, 44, 22, 45, 34, 46, 23, 47, 48, 49, 25, 50, 38, 51, 26, 52, 53, 54, 28, 55, 56, 57, 29, 58, 59, 60, 30, 61, 46, 62, 31, 63
Offset: 1

Views

Author

Antti Karttunen, Sep 05 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A000010(i) = A000010(j).

Crossrefs

Cf. also A318837.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007431(n) = sumdiv(n,d,moebius(n/d)*eulerphi(d));
    A318838(n) = { my(m=1); fordiv(n,d,if((A007431(d)!=0),m *= prime(A007431(d)))); (m); };
    v318839 = rgs_transform(vector(up_to,n,A318838(n)));
    A318839(n) = v318839[n];

A321322 a(n) = Sum_{d|n} mu(n/d)*J_2(d), where J_2() is the Jordan function (A007434).

Original entry on oeis.org

1, 2, 7, 9, 23, 14, 47, 36, 64, 46, 119, 63, 167, 94, 161, 144, 287, 128, 359, 207, 329, 238, 527, 252, 576, 334, 576, 423, 839, 322, 959, 576, 833, 574, 1081, 576, 1367, 718, 1169, 828, 1679, 658, 1847, 1071, 1472, 1054, 2207, 1008, 2304, 1152, 2009, 1503, 2807, 1152, 2737
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2018

Keywords

Comments

Möbius transform applied twice to squares.

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] Sum[MoebiusMu[d/j] j^2, {j, Divisors[d]}], {d, Divisors[n]}], {n, 55}]
    nmax = 55; Rest[CoefficientList[Series[Sum[DivisorSum[k, MoebiusMu[#] MoebiusMu[k/#] &] x^k (1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]]
    f[p_, e_] := If[e == 1, p^2 - 2, (p^2 - 1)^2*p^(2*e - 4)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X)^2/(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Dec 11 2021

Formula

G.f.: Sum_{k>=1} A007427(k)*x^k*(1 + x^k)/(1 - x^k)^3.
a(n) = Sum_{d|n} mu(n/d)*phi(d)*psi(d), where phi() is the Euler totient function (A000010) and psi() is the Dedekind psi function (A001615).
Multiplicative with a(p^e) = p^2 - 2 if e = 1 and (p^2 - 1)^2 * p^(2*e - 4) otherwise. - Amiram Eldar, Oct 26 2020
From Vaclav Kotesovec, Dec 11 2021: (Start)
Dirichlet g.f.: zeta(s-2) / zeta(s)^2.
Sum_{k=1..n} a(k) ~ n^3 / (3*zeta(3)^2). (End)
a(n) = Sum_{1 <= i, j <= n} mu(gcd(i, j, n)). - Peter Bala, Jan 21 2024

A340190 Möbius transform of A063994(x) = Product_{primes p dividing x} gcd(p-1, x-1).

Original entry on oeis.org

1, 0, 1, 0, 3, -1, 5, 0, 0, -3, 9, 0, 11, -5, -1, 0, 15, 0, 17, 0, -3, -9, 21, 0, 0, -11, 0, 2, 27, 1, 29, 0, -7, -15, -5, 0, 35, -17, -9, 0, 39, 3, 41, 0, 4, -21, 45, 0, 0, 0, -13, 2, 51, 0, -9, -2, -15, -27, 57, 0, 59, -29, 0, 0, 1, 11, 65, 0, -19, 7, 69, 0, 71, -35, 0, 2, -11, 9, 77, 0, 0, -39, 81, -2, -3, -41, -25
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Programs

  • PARI
    A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };
    A340190(n) = sumdiv(n,d,moebius(n/d)*A063994(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A063994(d).
a(n) = A063994(n) - A340191(n).

A114810 Number of complex, weakly primitive Dirichlet characters modulo n.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 2, 4, 4, 10, 2, 12, 6, 8, 4, 16, 4, 18, 4, 12, 10, 22, 4, 16, 12, 12, 6, 28, 8, 30, 8, 20, 16, 24, 4, 36, 18, 24, 8, 40, 12, 42, 10, 16, 22, 46, 8, 36, 16, 32, 12, 52, 12, 40, 12, 36, 28, 58, 8, 60, 30, 24, 16, 48, 20, 66, 16, 44, 24, 70, 8, 72, 36, 32, 18, 60, 24, 78
Offset: 1

Views

Author

Steven Finch, Feb 19 2006

Keywords

Comments

Any primitive Dirichlet character is weakly primitive (not conversely). Jager uses the phrase "proper character", but this conflicts with other authors (e.g., W. Ellison and F. Ellison, Prime Numbers, Wiley, 1985, p. 224) who use the word "proper" to mean the same as "primitive".
Equals Mobius transform of A055653. - Gary W. Adamson, Feb 28 2009

Examples

			The function chi defined on the integers by chi(1)=1, chi(5)=-1 and chi(2)=chi(3)=chi(4)=chi(6)=0 [and extended periodically] is a weakly primitive character mod 6, but not mod 12 or mod 18. In this sense, we eliminate the "overcounting" of complex Dirichlet characters in A000010.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[EulerPhi[d]*MoebiusMu[n/d], {d, Divisors[n]}]; squareFreeKernel[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := Sum[b[n/d], {d, Divisors[Denominator[n/squareFreeKernel[n]^2]]}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Sep 07 2015 *)
    f[p_, e_] := If[e == 1, p - 1, (p - 1)^2*p^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2022 *)

Formula

a(n) is multiplicative with a(p) = phi(p), a(p^k) = phi(p^k)-phi(p^(k-1)) and phi(n) = A000010(n).
a(n) = Sum_{d} A007431(n/d), where the sum is over all divisors 1<=d<=n of A055231(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 / 2 = 0.2679480769... . - Amiram Eldar, Nov 04 2022

A232930 For each complex primitive Dirichlet character chi modulo n, let f(chi) be the least positive integer k for which chi(k) is not in the set {0,1}. Then a(n) is the sum of f(chi) over all such chi.

Original entry on oeis.org

2, 3, 6, 0, 11, 8, 8, 0, 18, 5, 22, 0, 11, 12, 31, 0, 34, 17, 10, 0, 45, 20, 32, 0, 24, 17, 54, 0, 63, 24, 21, 0, 30, 20, 70, 0, 27, 22, 79, 0, 84, 27, 24, 0, 93, 20, 72, 0, 36, 33, 102, 0, 55, 38, 37, 0, 114, 27, 118, 0, 52, 48, 69, 0, 130, 47, 42, 0, 143, 40, 151, 0, 32, 55, 90, 0, 155, 52, 72, 0, 162, 33, 96, 0, 57, 56, 181, 0, 114, 63, 58, 0, 107, 40, 193, 0, 72, 48, 198, 0, 203, 78, 39, 0, 210, 60, 216, 0, 79, 60, 225, 0, 126, 85, 100, 0, 159, 46
Offset: 3

Views

Author

Steven Finch, Dec 02 2013

Keywords

Examples

			a(6)=0 since there are no primitive Dirichlet characters mod 6.
		

Crossrefs

Cf. A007431.

A256936 Decimal expansion of Sum_{k>=1} phi(k)/2^k, where phi is Euler's totient function.

Original entry on oeis.org

1, 3, 6, 7, 6, 3, 0, 8, 0, 1, 9, 8, 5, 0, 2, 2, 3, 5, 0, 7, 9, 0, 5, 0, 8, 1, 4, 6, 2, 1, 3, 0, 8, 8, 1, 3, 9, 0, 7, 4, 8, 9, 1, 9, 9, 8, 9, 6, 2, 7, 9, 4, 8, 5, 2, 9, 5, 6, 5, 9, 8, 4, 6, 3, 7, 6, 2, 1, 5, 6, 7, 1, 0, 3, 9, 7, 6, 6, 8, 7, 4, 4, 5, 5, 0, 3, 7, 9, 0, 0, 7, 0, 5, 4, 2, 8, 2, 8, 0
Offset: 1

Views

Author

Jean-François Alcover, Apr 13 2015

Keywords

Examples

			1.36763080198502235079050814621308813907489199896...
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Springer, 2004, p. 139.

Crossrefs

Programs

  • Mathematica
    digits = 99; m0 = 10; dd = 10; Clear[f]; f[m_] := f[m] = Sum[EulerPhi[n]/2^n, {n, 1, m}] // N[#, digits + 2*dd]&; f[m = m0] ; While[RealDigits[f[2*m], 10, digits + dd ] != RealDigits[f[m], 10, digits + dd ], m = 2*m; Print[m]]; RealDigits[f[m], 10, digits] // First
  • PARI
    suminf(n=1,eulerphi(n)/2^n) \\ Charles R Greathouse IV, Apr 20 2016

Formula

Equals Sum_{k>=1} A007431(k)/(2^k - 1). - Amiram Eldar, Jun 23 2020
Previous Showing 11-20 of 32 results. Next