A075675
Sum of next n even interprimes.
Original entry on oeis.org
4, 18, 74, 182, 358, 746, 1176, 1854, 2650, 3870, 5696, 7358, 9818, 13052, 16134, 19742, 24192, 30048, 36306, 42932, 50954, 59904, 70210, 82646, 93446, 105640, 117558, 131950, 148108, 165772
Offset: 1
a(1) = (3+5)/2 = 4; a(2) = (5+7)/2+(11+13)/2 = 6 + 12 = 18.
-
ev=Select[Table[(Prime[i]+Prime[i+1])/2, {i, 2, 2000}], EvenQ]; (* sum of next n even interprimes*) i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; A075675=Table[Sum[ev[[i]], {i, i1, i2}], {n, 30}]
Module[{nn=1000,ip,len},ip=Select[Mean/@Partition[Prime[Range[nn]],2,1],EvenQ];len=Length[ip];Total/@TakeList[ip,Range[(Sqrt[1+8*len]-1)/2]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jun 30 2020 *)
A161463
Sum of all primes from n-th prime to (2*n-1)-th prime.
Original entry on oeis.org
2, 8, 23, 48, 83, 132, 197, 270, 363, 468, 583, 714, 863, 1026, 1199, 1392, 1607, 1836, 2083, 2346, 2627, 2926, 3237, 3564, 3925, 4290, 4669, 5074, 5499, 5938, 6389, 6862, 7355, 7866, 8411, 8964, 9539, 10134, 10743, 11374, 12029, 12702, 13393, 14094
Offset: 1
Sum of 3rd prime to 5th prime = 5+7+11, hence a(3) = 23; sum of 4th prime to 7th prime = 7+11+13+17, hence a(4) = 48.
-
[ &+[ NthPrime(k): k in [n..2*n-1] ]: n in [1..44] ]; // Klaus Brockhaus, Jun 12 2009
-
nn=100;With[{prs=Prime[Range[nn]]},Table[Total[Take[prs,{n,2n-1}]],{n, Floor[(nn+1)/2]}]] (* Harvey P. Dale, Jan 12 2014 *)
A199714
A puzzle by Ron Hoeflin.
Original entry on oeis.org
0, 9, 23, 30, 35, 49, 58, 73, 94, 113
Offset: 1
A125130
Successive sums of consecutive primes that form a triangular grid.
Original entry on oeis.org
2, 10, 41, 129, 328, 712, 1371, 2427, 4028, 6338, 9523, 13887, 19580, 26940, 36227, 47721, 61910, 79168, 99685, 124211, 153178, 186914, 225831, 271061, 322858, 382038, 448869, 524451, 608914, 704204, 810459, 927883, 1057828, 1201162
Offset: 1
The consecutive primes 2, 3, 5, 7, 11, 13 form the triangular grid
2
3 5
7 11 13
These consecutive primes add up to 41, the third entry in the table.
-
With[{nmax = 50}, Accumulate[Prime[Range[PolygonalNumber[nmax]]]][[PolygonalNumber[Range[nmax]]]]] (* Paolo Xausa, May 15 2025 *)
-
a(n) = sum(x=1, n*(n+1)/2, prime(x))
A199715
A puzzle - explanation is not known.
Original entry on oeis.org
2, 8, 2, 3, 4, 9, 4, 5, 9, 8
Offset: 1
A249490
a(n) = Sum_{m=0..floor((n-1)/2)} prime((n-m)(n-m-1)/2+m+1).
Original entry on oeis.org
2, 3, 12, 28, 63, 113, 208, 296, 473, 657, 946, 1236, 1661, 2071, 2688, 3228, 4059, 4811, 5898, 6858, 8209, 9433, 11116, 12572, 14637, 16395, 18872, 21046, 23935, 26405, 29836, 32742, 36695, 40007, 44480, 48254, 53405, 57681, 63488, 68284, 74791, 80149, 87374
Offset: 1
a(1) = 2; a(2) = 3; a(3) = 7+5 = 12; a(4) = 17+11 = 28.
-
A249490:=n->add(ithprime((n-m)*(n-m-1)/2+m+1), m=0..floor((n-1)/2)): seq(A249490(n), n=1..50); # Wesley Ivan Hurt, Nov 07 2014
-
Table[Sum[Prime[(n - m) (n - m - 1)/2 + m + 1], {m, 0, Floor[(n - 1)/2]}], {n, 50}] (* Wesley Ivan Hurt, Nov 07 2014 *)
-
a(n) = sum(m=0,(n-1)\2, prime((n-m)*(n-m-1)/2+m+1)); \\ Michel Marcus, Nov 04 2014
A344482
Primes, each occurring twice, such that a(C(n)) = a(4*n-C(n)) = prime(n), where C is the Connell sequence (A001614).
Original entry on oeis.org
2, 3, 2, 5, 7, 3, 11, 5, 13, 17, 7, 19, 11, 23, 13, 29, 31, 17, 37, 19, 41, 23, 43, 29, 47, 53, 31, 59, 37, 61, 41, 67, 43, 71, 47, 73, 79, 53, 83, 59, 89, 61, 97, 67, 101, 71, 103, 73, 107, 109, 79, 113, 83, 127, 89, 131, 97, 137, 101, 139, 103, 149, 107, 151
Offset: 1
Written as an irregular triangle the sequence begins:
2;
3, 2, 5;
7, 3, 11, 5, 13;
17, 7, 19, 11, 23, 13, 29;
31, 17, 37, 19, 41, 23, 43, 29, 47;
53, 31, 59, 37, 61, 41, 67, 43, 71, 47, 73;
79, 53, 83, 59, 89, 61, 97, 67, 101, 71, 103, 73, 107;
...
The triangle can be arranged as shown below so that, in every row, each odd position term is equal to the term immediately below it.
2
3 2 5
7 3 11 5 13
17 7 19 11 23 13 29
31 17 37 19 41 23 43 29 47
...
-
nterms=64;a=ConstantArray[0,nterms];For[n=1;p=1,n<=nterms,n++,If[a[[n]]==0,a[[n]]=Prime[p];If[(d=4p-n)<=nterms,a[[d]]=a[[n]]];p++]]; a
(* Second program, triangle rows *)
nrows=8;Table[rlen=2r-1;Permute[Prime[Range[s=1+(r-1)(r-2)/2,s+rlen-1]],Join[Range[2,rlen,2],Range[1,rlen,2]]],{r,nrows}]
A038345
Sum of the next n members of the list of twin primes.
Original entry on oeis.org
3, 12, 41, 120, 307, 696, 1241, 1956, 3307, 5544, 8381, 12042, 16237, 21492, 27677, 33906, 42733, 54180, 65057, 76740, 88771, 104112, 124229, 146490, 169933, 196884, 230807, 263790, 297475, 339372, 385349, 441900, 496375, 557628, 617357, 672510, 743917, 807888
Offset: 1
Den Roussel (DenRoussel(AT)webtv.net)
a(1) = 3, a(2) = 5+7 = 12, a(3) = 11+13+17 = 41, ...
a(26) = 7211+7213+7307+7309+7331+7333+7349+7351+7457+7459+7487+7489+7547+7549+7559+ 7561+7589+7591+7757+7759+7877+7879+7949+7951+8009+8011 = 196884. - _Omar E. Pol_, Nov 29 2014
-
With[{nn=100},Total/@TakeList[Union[Flatten[Select[ Partition[Prime[ Range[ 300nn]],2,1],#[[2]]-#[[1]]==2&]]],Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Apr 27 2018 *)
-
isA001097(n) = (isprime(n) && (isprime(n+2) || isprime(n-2))) ;
lista(nn) = {v = select(x->isA001097(x), vector(nn, i, i)); idep = 1; for (n=1, sqrtint(#v), print1(sum(i=idep, idep+n-1, v[i]), ", "); idep += n;);} \\ Michel Marcus, Nov 29 2014
Comments