A269522
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 622", based on the 5-celled von Neumann neighborhood.
Original entry on oeis.org
1, 5, 9, 21, 25, 37, 57, 69, 89, 101, 121, 133, 169, 205, 257, 309, 361, 333, 377, 381, 385, 461, 465, 509, 601, 653, 697, 781, 889, 845, 1097, 1077, 1353, 1205, 1305, 1349, 1345, 1357, 1321, 1437, 1553, 1589, 1601, 1709, 1729, 1813, 1937, 2069, 2361, 2181
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
-
rule=622; stages=300; ca=CellularAutomaton[ {rule,{2,{{0,2,0},{2,1,2},{0,2,0}}},{1,1}}, {{{1}},0}, stages]; (* Start with single black cell *) Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
Original entry on oeis.org
1, 1, 2, 3, 8, 4, 9, 30, 28, 8, 27, 108, 144, 80, 16, 81, 378, 648, 528, 208, 32, 243, 1296, 2700, 2880, 1680, 512, 64, 729, 4374, 10692, 14040, 10800, 4896, 1216, 128, 2187, 14580, 40824, 63504, 60480, 36288, 13440, 2816, 256, 6561, 48114, 151632, 272160, 308448, 229824, 112896, 35328, 6400, 512
Offset: 0
First six rows:
1;
1, 2;
3, 8, 4;
9, 30, 28, 8;
27, 108, 144, 80, 16;
81, 378, 648, 528, 208, 32;
-
function T(n, k) // T = A193731
if k lt 0 or k gt n then return 0;
elif n lt 2 then return k+1;
else return 3*T(n-1, k) + 2*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
-
(* First program *)
z = 8; a = 2; b = 1; c = 2; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193731 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
-
def T(n, k): # T = A193731
if (k<0 or k>n): return 0
elif (n<2): return k+1
else: return 3*T(n-1, k) + 2*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023
A209171
Triangle of coefficients of polynomials v(n,x) jointly generated with A209170; see the Formula section.
Original entry on oeis.org
1, 3, 2, 6, 8, 3, 12, 25, 19, 5, 24, 68, 77, 40, 8, 48, 172, 259, 201, 80, 13, 96, 416, 782, 806, 478, 154, 21, 192, 976, 2200, 2825, 2222, 1067, 289, 34, 384, 2240, 5888, 9048, 8857, 5640, 2277, 532, 55, 768, 5056, 15184, 27160, 31787, 25184, 13483
Offset: 1
First five rows:
1;
3, 2;
6, 8, 3;
12, 25, 19, 5;
24, 68, 77, 40, 8;
First three polynomials v(n,x):
1
3 + 2x
6 + 8x + 3x^2.
From _Philippe Deléham_, Mar 10 2012: (Start)
Triangle (1, 2, -3/2, 1/2, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins (0 <= k <= n):
1;
1, 0;
3, 2, 0;
6, 8, 3, 0;
12, 25, 19, 5, 0;
24, 68, 77, 40, 8, 0;
48, 172, 259, 201, 80, 13, 0;
96, 416, 782, 806, 478, 154, 21, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209170 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209171 *)
A138277
Total number of active nodes of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 4 (with a single 1 as initial condition).
Original entry on oeis.org
1, 5, 13, 49, 109, 473, 1081, 4037, 8749, 37913, 88465, 325021, 717337, 3108461, 7095613, 26490289, 57395629, 248714393, 580333585, 2132141341, 4707150193, 20397650837, 46548642709, 173816036825, 376630110937, 1632063814061, 3808148899477, 13991111158153
Offset: 0
Jens Christian Claussen (claussen(AT)theo-physik.uni-kiel.de), Mar 11 2008
Let x_0 be the state (0 or 1) of the focal node and x_i the state of every node that is i steps away from the focal node. In time step n=0, all x_i=0 except x_0=1 (start with a single seed). In the next step, x_1=1 as they have 1 neighbor being 1. For n=2, the x_1 nodes have 1 neighbor being 1 (x_0) and themselves being 1; the sum being 2, modulo 2, resulting in x_1=0.
The focal node and outmost nodes x_n are always 1.
Thus one has the patterns
x_0, x_1, x_2, ...
1
1 1
1 0 1
1 0 1 1
1 0 0 0 1
1 1 0 1 1 1
1 0 0 0 1 0 1
1 1 0 1 1 0 1 1
1 0 0 0 0 0 0 0 1
(N.B.: This is equivalent to the right half plane of Rule 150 in 1D.)
The nodes have the multiplicities 1,4,12,36,108,324,972,...
The sequence then is obtained by
a(n)= x_0(n) + 4*(x_1(n) + sum_(i=2...n) x_i(n) * 3^(i-1)).
-
nmax = 30;
states = CellularAutomaton[150, {{1}, 0}, nmax];
T[n_, i_] := states[[n+1, nmax+i+1]];
a[n_] := T[n, 0] + 4(T[n, 1]+Sum[3^(i-1) T[n, i], {i, 2, n}]);
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 20 2018 *)
A331211
Number of green nodes in n-th power graph W exponentiation of a cycle graph with 7 blue nodes and one green node.
Original entry on oeis.org
1, 15, 117, 891, 6777, 51543, 392013, 2981475, 22675761, 172461663, 1311666021, 9975943179, 75872547369, 577052549415, 4388802753213, 33379264377459, 253867706760033, 1930803860947887, 14684827767302997, 111686210555580315, 849435201142733529, 6460422977475127287
Offset: 0
For n = 2 take g(1)=15 and b(1)=51. Multiply b(1) by 2 to get 102 add 15 to get 117.
For n = 3 take g(2)=117 and b(2)=387. Multiply b(2) by 2 to get 774 add 177 to get 891.
Cf.
A332936 (number of blue nodes).
-
Vec((1 + 7*x) / (1 - 8*x + 3*x^2) + O(x^20)) \\ Colin Barker, Mar 03 2020
-
g=1
b=7
sg=0
sb=0
bl=[]
gl=[]
for int in range(1,20):
sg=g*1+b*2
sb=b*7+g*2
g=sg
b=sb
gl.append(g)
bl.append(b)
print(gl)
A374096
Number of edge covers of fan graph F_{1,n}.
Original entry on oeis.org
1, 4, 16, 59, 214, 768, 2745, 9792, 34900, 124339, 442906, 1577540, 5618665, 20011452, 71272296, 253840779, 904068526, 3219889720, 11467810393, 40843217384, 145465283884, 518082304131, 1845177508818, 6571697181084, 23405446635913, 83359734391300, 296890096642144
Offset: 1
The fan graph F_{1,2} is the cycle with three vertices and has 4 edge covers.
The graph F_{1,3} is formed by adding a chord to the cycle with four vertices. The cycle C_4 has 7 edge covers, so there are 7 edge covers of F_{1,3} without the chord. If the chord is there, the two endpoints are covered. To cover the remaining two vertices, we need at least one of the two edges on each side of each vertex, giving us 3*3 choices total. So we have 16 edge covers for F_{1,3}.
We interpret F_{1,1} to be the path with two vertices with one edge cover.
-
LinearRecurrence[{4, 0, -5, -2}, {1, 4, 16, 59}, 30] (* Paolo Xausa, Jan 22 2025 *)
A052986
Expansion of ( 1-2*x ) / ( (x-1)*(2*x^2+3*x-1) ).
Original entry on oeis.org
1, 2, 7, 24, 85, 302, 1075, 3828, 13633, 48554, 172927, 615888, 2193517, 7812326, 27824011, 99096684, 352938073, 1257007586, 4476898903, 15944711880, 56787933445, 202253224094, 720335539171, 2565513065700, 9137210275441, 32542656957722, 115902391424047
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
I:=[1, 2, 7]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
-
spec := [S,{S=Sequence(Union(Prod(Union(Sequence(Union(Z,Z)),Z),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
Join[{a=1,b=2},Table[c=3*b+2*a-1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011*)
LinearRecurrence[{4,-1,-2},{1,2,7},40] (* Vincenzo Librandi, Jun 23 2012 *)
-
a(n) = round((1/4+(2^(-3-n)*((3-sqrt(17))^n*(-5+3*sqrt(17))+(3+sqrt(17))^n*(5+3*sqrt(17))))/sqrt(17))) \\ Colin Barker, Sep 02 2016
A101604
a(n) = 2*a(n-1) + 5*a(n-2) + 2*a(n-3).
Original entry on oeis.org
1, 2, 9, 30, 109, 386, 1377, 4902, 17461, 62186, 221481, 788814, 2809405, 10005842, 35636337, 126920694, 452034757, 1609945658, 5733906489, 20421610782, 72732645325, 259041157538, 922588763265, 3285848604870, 11702723341141
Offset: 0
-
LinearRecurrence[{2,5,2},{1,2,9},30] (* Harvey P. Dale, Jun 01 2025 *)
A138276
Total number of active nodes of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 3 (with a single 1 as initial condition).
Original entry on oeis.org
1, 4, 6, 18, 30, 90, 102, 306, 510, 1530, 1542, 4626, 7110
Offset: 0
Jens Christian Claussen (claussen(AT)theo-physik.uni-kiel.de), Mar 11 2008
Let x_0 be the state (0 or 1) of the focal node and x_i the state of every node that is i steps away from the focal node. In time step n=0, all x_i=0 except x_0=1 (start with a single seed). In the next step, x_1=1 as they have 1 neighbor being 1. For n=2, the x_1 nodes have 1 neighbor being 1 (x_0) and
themselves being 1; the sum being 2, modulo 2, resulting in x_1=0. The focal node itself is 1 and has 3 neighbors being 1, sum being 4, modulo 2, resulting in x_0=0. The outmost nodes x_n are always 1.
Thus one has the patterns
x_0, x_1, x_2, ...
1
1 1
0 0 1
0 0 1 1
0 0 1 0 1
0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 0 1 0 1 0 1 0 1
0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1
After 2 time steps, the x_0 and x_1 stay frozen at zero and the remaining x_i are generated by Rule 60 (or Rule 90 on half lattice spacing).
These nodes have multiplicities 1,3,6,12,24,48,96,192,384,768,...
The sequence then is obtained by
a(n) = x_0(n) + 3 * Sum_{i=1..n} x_i(n) * 2^(i-1)
Comments