A035017
One quarter of 9-factorial numbers.
Original entry on oeis.org
1, 13, 286, 8866, 354640, 17377360, 1007886880, 67528420960, 5132159992960, 436233599401600, 41005958343750400, 4223613709406291200, 473044735453504614400, 57238412989874058342400, 7440993688683627584512000, 1034298122727024234247168000, 153076122163599586668580864000
Offset: 1
-
[n le 1 select 1 else (9*n-5)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[4/9, n]/4, {n,40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(4/9,n)/4 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035018
One fifth of 9-factorial numbers.
Original entry on oeis.org
1, 14, 322, 10304, 422464, 21123200, 1246268800, 84746278400, 6525463436800, 561189855564800, 53313036278656000, 5544555772980224000, 626534802346765312000, 76437245886305368064000, 10013279211106003216384000, 1401859089554840450293760000, 208877004343671227093770240000
Offset: 1
-
[n le 1 select 1 else (9*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Rest[FoldList[Times,1,9*Range[20]-4]/5] (* Harvey P. Dale, May 22 2013 *)
-
[9^n*rising_factorial(5/9,n)/5 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035020
One sixth of 9-factorial numbers.
Original entry on oeis.org
1, 15, 360, 11880, 498960, 25446960, 1526817600, 105350414400, 8217332323200, 714907912118400, 68631159563366400, 7206271754153472000, 821514979973495808000, 101046342536739984384000, 13338117214849677938688000, 1880674527293804589355008000, 282101179094070688403251200000
Offset: 1
-
[n le 1 select 1 else (9*n-3)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[2/3, n]/6, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(2/3,n)/6 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A144827
Partial products of successive terms of A017029; a(0)=1.
Original entry on oeis.org
1, 4, 44, 792, 19800, 633600, 24710400, 1136678400, 60243955200, 3614637312000, 242180699904000, 17921371792896000, 1451631115224576000, 127743538139762688000, 12135636123277455360000, 1237834884574300446720000, 134924002418598748692480000, 15651184280557454848327680000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*11=44, a(3)=4*11*18=792, a(4)=4*11*18*25=19800, ...
-
[ 1 ] cat [ &*[ (7*k+4): k in [0..n] ]: n in [0..14] ]; // Klaus Brockhaus, Nov 10 2008
-
FoldList[Times,1,Range[4,150,7]] (* Harvey P. Dale, Apr 25 2014 *)
-
[1]+[4*7^(n-1)*rising_factorial(11/7, n-1) for n in (1..30)] # G. C. Greubel, Feb 22 2022
A317996
Expansion of e.g.f. exp((1 - exp(-3*x))/3).
Original entry on oeis.org
1, 1, -2, 1, 19, -128, 379, 1549, -32600, 261631, -845909, -10713602, 237695149, -2513395259, 11792378662, 151915180429, -4826456213273, 70741388773960, -558513179369297, -2833805536521839, 200720356696607416, -4256279445015662093, 54120395442382043743, -173423789950999240226
Offset: 0
-
a:=series(exp((1 - exp(-3*x))/3), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[Exp[(1 - Exp[-3 x])/3], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-3)^(n - k) StirlingS2[n, k], {k, 0, n}], {n, 0, 23}]
a[n_] := a[n] = Sum[(-3)^(k - 1) Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
Table[(-3)^n BellB[n, -1/3], {n, 0, 23}] (* Peter Luschny, Aug 20 2018 *)
A225470
Triangle read by rows, s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 2, 1, 10, 7, 1, 80, 66, 15, 1, 880, 806, 231, 26, 1, 12320, 12164, 4040, 595, 40, 1, 209440, 219108, 80844, 14155, 1275, 57, 1, 4188800, 4591600, 1835988, 363944, 39655, 2415, 77, 1, 96342400, 109795600, 46819324, 10206700, 1276009, 95200, 4186, 100, 1
Offset: 0
Triangle starts:
[n\k][ 0, 1, 2, 3, 4, 5, 6]
[0] 1,
[1] 2, 1,
[2] 10, 7, 1,
[3] 80, 66, 15, 1,
[4] 880, 806, 231, 26, 1,
[5] 12320, 12164, 4040, 595, 40, 1,
[6] 209440, 219108, 80844, 14155, 1275, 57, 1.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see Maple program): T(4, 2) = T(3, 1) + (3*4 - 1)*T(3, 2) = 66 + 11*15 = 231.
Boas-Buck type recurrence for column k = 2 and n = 4: T(4, 2) = (4!/2)*(3*(2 + 6*(5/12))*T(2, 2)/2! + 1*(2 + 6*(1/2))*T(3,2)/3!) = (4!/2)*(3*9/4 + 5*15/3!) = 231. (End)
-
SF_C := proc(n, k, m) option remember;
if n = 0 and k = 0 then return(1) fi;
if k > n or k < 0 then return(0) fi;
SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m) end:
seq(print(seq(SF_C(n, k, 3), k = 0..n)), n = 0..8);
-
SFC[0, 0, ] = 1; SFC[n, k_, ] /; (k > n || k < 0) = 0; SFC[n, k_, m_] := SFC[n, k, m] = SFC[n-1, k-1, m] + (m*n-1)*SFC[n-1, k, m]; Table[SFC[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
A007788
Number of augmented Andre 3-signed permutations: E.g.f. (1-sin(3*x))^(-1/3).
Original entry on oeis.org
1, 1, 4, 19, 136, 1201, 13024, 165619, 2425216, 40132801, 740882944, 15091932019, 336257744896, 8134269015601, 212309523595264, 5946914908771219, 177934946000306176, 5663754614516217601, 191097349696090537984, 6812679868133940475219, 255885704427935576621056
Offset: 0
R. Ehrenborg (ehrenbor(AT)lacim.uqam.ca) and M. A. Readdy (readdy(AT)lacim.uqam.ca)
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- R. Ehrenborg and M. A. Readdy, Sheffer posets and r-signed permutations, Preprint submitted to Ann. Sci. Math. Quebec, 1994. (Annotated scanned copy)
- R. Ehrenborg and M. A. Readdy, Sheffer posets and r-signed permutations, Ann. Sci. Math. Québec, 19 (1995), no. 2, 173-196.
- R. Ehrenborg and M. A. Readdy, The r-cubical lattice and a generalization of the cd-index, European J. Combin. 17 (1996), no. 8, 709-725.
-
R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!(Laplace( (1-Sin(3*x))^(-1/3) ))); // G. C. Greubel, Mar 05 2020
-
m:=20; S:=series( (1-sin(3*x))^(-1/3), x, m+1): seq(j!*coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 05 2020
-
With[{nn=20},CoefficientList[Series[(1-Sin[3x])^(-1/3),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Nov 23 2011 *)
-
Vec(serlaplace( (1-sin(3*x))^(-1/3) +O('x^20) )) \\ G. C. Greubel, Mar 05 2020
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a007559(n) = prod(k=0, n-1, 3*k+1);
a(n) = sum(k=0, n, a007559(k)*(3*I)^(n-k)*a136630(n, k)); \\ Seiichi Manyama, Jun 24 2025
-
m=20;
def A007788_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( (1-sin(3*x))^(-1/3) ).list()
a=A007788_list(m+1); [factorial(n)*a[n] for n in (0..m)] # G. C. Greubel, Mar 05 2020
A034787
a(n) = n-th sextic factorial number divided by 5.
Original entry on oeis.org
1, 11, 187, 4301, 124729, 4365515, 178986115, 8412347405, 445854412465, 26305410335435, 1709851671803275, 121399468698032525, 9347759089748504425, 775864004449125867275, 69051896395972202187475, 6559930157617359207810125, 662552945919353279988822625
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 6*j-1)/5 ); # G. C. Greubel, Nov 11 2019
-
[(&*[6*j-1: j in [1..n]])/5: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(6*j-1, j=1..n)/5, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[6^n*Pochhammer[5/6, n]/5, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
With[{nn=20},CoefficientList[Series[(-1+(1-6x)^(-5/6))/5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 21 2024 *)
-
vector(20, n, prod(j=1,n, 6*j-1)/5 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (6*j-1) for j in (1..n))/5 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A035021
One seventh of 9-factorial numbers.
Original entry on oeis.org
1, 16, 400, 13600, 584800, 30409600, 1854985600, 129848992000, 10258070368000, 902710192384000, 87562888661248000, 9281666198092288000, 1067391612780613120000, 132356559984796026880000, 17603422477977871575040000, 2499685991872857763655680000, 377452584772801522312007680000
Offset: 1
-
[n le 1 select 1 else (9*n-2)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
f := gfun:-rectoproc({(9*n - 2)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
-
Table[9^n*Pochhammer[7/9, n]/7, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^n*rising_factorial(7/9,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A051604
a(n) = (3*n+4)!!!/4!!!.
Original entry on oeis.org
1, 7, 70, 910, 14560, 276640, 6086080, 152152000, 4260256000, 132067936000, 4490309824000, 166141463488000, 6645658539520000, 285763317199360000, 13145112591170560000, 644110516967357440000, 33493746882302586880000, 1842156078526642278400000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(7/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
With[{nn = 30}, CoefficientList[Series[1/(1-3*x)^(7/3), {x, 0, nn}], x]* Range[0,nn]! ] (* G. C. Greubel, Aug 15 2018 *)
With[{c=Times@@Range[4,1,-3]},Table[(Times@@Range[3n+4,1,-3])/c,{n,0,20}]] (* Harvey P. Dale, Feb 06 2023 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(7/3))) \\ G. C. Greubel, Aug 15 2018
Comments