cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A099263 a(n) = (1/40320)*8^n + (1/1440)*6^n + (1/360)*5^n + (1/64)*4^n + (11/180)*3^n + (53/288)*2^n + 103/280. Partial sum of Stirling numbers of second kind S(n,i), i=1..8 (i.e., a(n) = Sum_{i=1..8} S(n,i)).

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115929, 677359, 4189550, 27243100, 184941915, 1301576801, 9433737120, 69998462014, 529007272061, 4054799902003, 31415584940850, 245382167055488, 1928337630016767, 15222915798289765, 120582710957928740, 957566218595705122, 7618489083072350433
Offset: 1

Views

Author

Nelma Moreira, Oct 10 2004

Keywords

Comments

Density of regular language L over {1,2,3,4,5,6,7,8} (i.e., number of strings of length n in L) described by a regular expression with c = 8: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*), where "Sum" stands for union and "Product" for concatenation.

Crossrefs

A row of the array in A278984.
Cf. A008277 (Stirling2), A248925.

Programs

  • Magma
    [(1/40320)*8^n+(1/1440)*6^n+(1/360)*5^n+(1/64)*4^n +(11/180)*3^n+(53/288)*2^n+103/280: n in [1..30]]; // Vincenzo Librandi, Jul 27 2017
    
  • Mathematica
    CoefficientList[Series[-(3641 x^6 - 6583 x^5 + 4566 x^4 - 1579 x^3 + 290 x^2 - 27 x + 1) / ((x - 1) (2 x - 1) (3 x - 1) (4 x - 1) (5 x - 1) (6 x - 1) (8 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 27 2017 *)
    Table[Sum[StirlingS2[n, k], {k, 0, 8}], {n, 1, 30}] (* Robert A. Russell, Apr 25 2018 *)
    LinearRecurrence[{29,-343,2135,-7504,14756,-14832,5760},{1,2,5,15,52,203,877},30] (* Harvey P. Dale, Aug 27 2019 *)
  • PARI
    a(n) = (1/40320)*8^n + (1/1440)*6^n + (1/360)*5^n + (1/64)*4^n + (11/180)*3^n + (53/288)*2^n + 103/280; \\ Altug Alkan, Apr 25 2018

Formula

For c = 8, a(n) = c^n/c! + Sum_{k=1..c-2} k^n/k! * Sum_{j=2..c-k} (-1)^j/j!, or = Sum_{k=1..c} g(k, c)*k^n, where g(1, 1) = 1, g(1, c) = g(1, c-1) + (-1)^(c-1)/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c.
G.f.: -x*(3641*x^6 - 6583*x^5 + 4566*x^4 - 1579*x^3 + 290*x^2 - 27*x + 1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). [Colin Barker, Dec 05 2012]
a(n) = Sum_{k=0..8} Stirling2(n,k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} (1 - j*x) with k = 8. - Robert A. Russell, Apr 25 2018

Extensions

More terms from Michel Marcus, Jan 05 2025

A208201 T(n,k)=Number of nXk 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

1, 2, 2, 5, 14, 5, 15, 178, 178, 15, 51, 2653, 10366, 2653, 51, 187, 41272, 639701, 639701, 41272, 187, 715, 648569, 39725054, 156617480, 39725054, 648569, 715, 2795, 10215440, 2468504665, 38372808893, 38372808893, 2468504665, 10215440, 2795
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Table starts
....1.........2.............5.................15......................51
....2........14...........178...............2653...................41272
....5.......178.........10366.............639701................39725054
...15......2653........639701..........156617480.............38372808893
...51.....41272......39725054........38372808893..........37069738362057
..187....648569....2468504665......9402035642924.......35810971705853725
..715..10215440..153402542384...2303673397508915....34594950233928279876
.2795.160984657.9533100532733.564442821781056268.33420220819293699707599

Examples

			Some solutions for n=4 k=3
..0..0..1....0..0..0....0..1..1....0..0..0....0..1..1....0..0..0....0..1..0
..0..2..0....0..1..1....0..0..0....1..1..0....1..0..0....0..1..2....0..2..3
..1..2..1....2..0..2....0..1..1....0..1..0....0..1..0....1..1..3....3..0..0
..3..0..0....2..1..0....0..2..1....0..1..0....1..0..0....1..0..0....2..1..3
		

Crossrefs

Column 1 is A007581(n-1)

A208864 T(n,k)=Number of nXk 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

1, 2, 2, 5, 11, 5, 15, 127, 127, 15, 51, 1691, 5796, 1691, 51, 187, 23047, 273049, 273049, 23047, 187, 715, 315203, 12883280, 44452082, 12883280, 315203, 715, 2795, 4313071, 607924387, 7240366702, 7240366702, 607924387, 4313071, 2795, 11051, 59022155
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Table starts
....1........2.............5................15....................51
....2.......11...........127..............1691.................23047
....5......127..........5796............273049..............12883280
...15.....1691........273049..........44452082............7240366702
...51....23047......12883280........7240366702.........4071491223248
..187...315203.....607924387.....1179377179523......2289701830963879
..715..4313071...28686344276...192108983085145...1287681340443915644
.2795.59022155.1353633375649.31292693945057258.724166398812363542260

Examples

			Some solutions for n=4 k=3
..0..0..1....0..0..0....0..1..1....0..1..0....0..0..0....0..0..0....0..0..0
..0..2..0....0..1..2....1..0..2....0..2..3....0..1..2....0..1..1....0..1..1
..1..2..1....1..2..3....3..0..1....3..0..0....2..1..2....0..1..2....1..2..0
..3..0..0....1..0..0....1..1..2....2..1..3....0..1..2....2..3..2....1..0..1
		

Crossrefs

Column 1 is A007581(n-1)

A223062 T(n,k)=Number of nXk 0..3 arrays with all horizontally or vertically connected equal values in a straight line, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 2, 2, 5, 10, 5, 15, 114, 114, 15, 51, 1473, 4865, 1473, 51, 187, 19360, 213469, 213469, 19360, 187, 715, 255045, 9383963, 31331820, 9383963, 255045, 715, 2795, 3361024, 412602889, 4606719559, 4606719559, 412602889, 3361024, 2795, 11051, 44294253
Offset: 1

Views

Author

R. H. Hardin Mar 13 2013

Keywords

Comments

Table starts
...1......2.........5...........15...............51.................187
...2.....10.......114.........1473............19360..............255045
...5....114......4865.......213469..........9383963...........412602889
..15...1473....213469.....31331820.......4606719559........677531592132
..51..19360...9383963...4606719559....2266567594841....1115636153544055
.187.255045.412602889.677531592132.1115636153544055.1837966217755803448

Examples

			Some solutions for n=3 k=4
..0..1..0..1....0..1..0..2....0..1..0..2....0..1..0..1....0..1..1..0
..2..2..0..1....2..1..0..2....2..3..0..2....2..1..2..2....0..2..3..0
..3..3..3..3....2..3..1..0....2..1..2..0....3..2..3..0....0..2..0..1
		

Crossrefs

Column 1 is A007581(n-1)

Formula

Empirical for column k:
k=1: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
k=2: a(n) = 18*a(n-1) -71*a(n-2) +102*a(n-3) -48*a(n-4) for n>5
k=3: a(n) = 55*a(n-1) -515*a(n-2) +1337*a(n-3) -696*a(n-4) -1188*a(n-5) +1008*a(n-6) for n>7
k=4: [order 11 for n>12]

A206396 T(n,k)=Number of nXk 0..5 arrays with no element equal to another within a city block distance of two, and new values 0..5 introduced in row major order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 4, 2, 5, 25, 26, 25, 5, 15, 172, 206, 206, 172, 15, 51, 1201, 1592, 1931, 1592, 1201, 51, 187, 8404, 12428, 16784, 16784, 12428, 8404, 187, 715, 58825, 96632, 151630, 170796, 151630, 96632, 58825, 715, 2795, 411772, 752552, 1343560
Offset: 1

Views

Author

R. H. Hardin Feb 07 2012

Keywords

Comments

Table starts
...1.....1......1........2.........5.........15..........51..........187
...1.....1......4.......25.......172.......1201........8404........58825
...1.....4.....26......206......1592......12428.......96632.......752552
...2....25....206.....1931.....16784.....151630.....1343560.....12046648
...5...172...1592....16784....170796....1787258....18574298....193499878
..15..1201..12428...151630...1787258...21983256...268956972...3301485294
..51..8404..96632..1343560..18574298..268956972..3889732730..56960076094
.187.58825.752552.12046648.193499878.3301485294.56960076094.998388746378

Examples

			Some solutions for n=4 k=3
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..2..3..0....2..3..4....2..3..4....3..4..5....3..4..5....2..3..0....2..3..4
..1..4..5....1..0..5....4..5..1....5..0..1....1..0..3....4..5..1....1..5..0
..0..2..1....3..2..1....1..2..0....4..3..2....2..5..1....0..2..3....0..2..3
		

Crossrefs

Column 1 is A007581(n-3)
Column 2 is A034494(n-2)

A208175 T(n,k)=Number of nXk 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward neighbors.

Original entry on oeis.org

1, 2, 2, 5, 13, 5, 15, 159, 159, 15, 51, 2277, 8469, 2277, 51, 187, 33831, 473928, 473928, 33831, 187, 715, 506493, 26625693, 99752346, 26625693, 506493, 715, 2795, 7594479, 1496307201, 21002874867, 21002874867, 1496307201, 7594479, 2795, 11051
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Table starts
....1.........2.............5.................15.....................51
....2........13...........159...............2277..................33831
....5.......159..........8469.............473928...............26625693
...15......2277........473928...........99752346............21002874867
...51.....33831......26625693........21002874867.........16567902881244
..187....506493....1496307201......4422202024212......13069424064243420
..715...7594479...84091222866....931104734002155...10309684155118737894
.2795.113908437.4725865313907.196046229442844736.8132690993759302714128

Examples

			Some solutions for n=4 k=3
..0..0..0....0..0..0....0..1..0....0..1..0....0..1..1....0..0..0....0..0..1
..0..1..2....0..1..0....0..2..2....0..2..3....1..0..0....0..1..1....0..1..0
..1..2..3....1..2..1....1..2..1....3..0..0....0..1..0....1..2..0....0..0..1
..1..0..0....0..1..3....1..3..2....2..1..3....1..0..1....1..0..1....1..1..0
		

Crossrefs

Column 1 is A007581(n-1)
Column 2 is A205163(n-1)

A060919 Number of corners in a 4-sided fractal.

Original entry on oeis.org

4, 8, 20, 60, 204, 748, 2860, 11180, 44204, 175788, 701100, 2800300, 11193004, 44755628, 178989740, 715893420, 2863442604, 11453508268, 45813508780, 183252986540, 733009849004, 2932035201708, 11728132418220, 46912512895660, 187650018028204, 750600005003948, 3002399885798060
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-14,8},{4,8,20},30] (* Harvey P. Dale, Sep 01 2023 *)
  • PARI
    a(n) = { (2^n + 2)*(2^n + 4)/6 } \\ Harry J. Smith, Jul 14 2009

Formula

a(n) = 4^n/6+2^n+4/3 = (2^n+2)*(2^n+4)/6 = 4*A007581(n-1) = 4(a(n-1)-1)-2^n = A028400(n-1)-A002450(n-1).
From Colin Barker, Nov 28 2012: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3).
G.f.: -4*x*(5*x^2-5*x+1) / ((x-1)*(2*x-1)*(4*x-1)). (End)
E.g.f.: (exp(4*x) + 6*exp(2*x) + 8*exp(x) - 15)/6. - Stefano Spezia, Dec 26 2024

A164863 Number of ways of placing n labeled balls into 9 indistinguishable boxes; word structures of length n using a 9-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678514, 4211825, 27602602, 190077045, 1368705291, 10254521370, 79527284317, 635182667816, 5199414528808, 43426867585575, 368654643520692, 3170300933550687, 27542984610086665, 241205285284001240
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2009

Keywords

Crossrefs

Programs

  • Maple
    # first program:
    a:= n-> ceil(103/560*2^n +53/864*3^n +11/720*4^n +5^n/320 +6^n/2160 +7^n/10080 +9^n/362880): seq(a(n), n=0..25);
    # second program:
    a:= n-> add(Stirling2(n, k), k=0..9): seq(a(n), n=0..25);
  • Mathematica
    Table[Sum[StirlingS2[n, k], {k, 0, 9}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)

Formula

a(n) = Sum_{k=0..9} stirling2 (n,k).
a(n) = ceiling (103/560*2^n +53/864*3^n +11/720*4^n +5^n/320 +6^n/2160 +7^n/10080 +9^n/362880).
G.f.: (16687*x^8 -67113*x^7 +88620*x^6 -56993*x^5 +20529*x^4 -4353*x^3 +539*x^2 -36*x+1) / ((9*x-1) *(7*x-1) *(6*x-1) *(5*x-1) *(4*x-1) *(3*x-1) *(2*x-1) *(x-1)).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=9. - Robert A. Russell, Apr 25 2018

A223041 T(n,k)=Number of nXk 0..3 arrays with no more than floor(nXk/2) elements equal to at least one horizontal, diagonal or antidiagonal neighbor, with new values introduced in row major 0..3 order.

Original entry on oeis.org

1, 1, 2, 2, 8, 5, 11, 98, 105, 15, 34, 1265, 3780, 1585, 51, 131, 17356, 229437, 255943, 23107, 187, 438, 241583, 8580619, 42964721, 10904199, 353631, 715, 2150, 3395532, 545607733, 7361951209, 8206670940, 751990800, 5338646, 2795, 7676, 48048796
Offset: 1

Views

Author

R. H. Hardin Mar 12 2013

Keywords

Comments

Table starts
.....1........1...........2............11............34...........131
.....2........8..........98..........1265.........17356........241583
.....5......105........3780........229437.......8580619.....545607733
....15.....1585......255943......42964721....7361951209.1278533695058
....51....23107....10904199....8206670940.3829674402996
...187...353631...751990800.1590576924149
...715..5338646.33007705273
..2795.81874696
.11051

Examples

			Some solutions for n=3 k=4
..0..1..0..2....0..1..2..3....0..1..0..0....0..1..2..0....0..1..2..2
..3..1..3..2....0..1..1..2....2..1..3..2....3..0..2..3....0..1..2..3
..2..2..1..1....2..3..0..3....3..2..0..2....2..0..1..2....3..1..2..3
		

Crossrefs

Column 1 is A007581(n-1)
Column 2 is A222839
Row 1 is A222650

A241119 T(n,k)=Number of nXk 0..3 arrays with no element equal to exactly three horizontal or vertical neighbors, with new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 2, 2, 5, 15, 5, 15, 178, 178, 15, 51, 2614, 9918, 2614, 51, 187, 40148, 587555, 587555, 40148, 187, 715, 622645, 35000157, 134229632, 35000157, 622645, 715, 2795, 9676364, 2085879115, 30679522712, 30679522712, 2085879115, 9676364, 2795
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2014

Keywords

Comments

Table starts
...1......2..........5............15................51..................187
...2.....15........178..........2614.............40148...............622645
...5....178.......9918........587555..........35000157...........2085879115
..15...2614.....587555.....134229632.......30679522712........7012241396116
..51..40148...35000157...30679522712....26891788727245....23571710809729613
.187.622645.2085879115.7012241396116.23571710809729613.79236581561126536192

Examples

			Some solutions for n=3 k=4
..0..1..1..0....0..1..1..0....0..1..0..1....0..1..1..0....0..0..1..1
..2..1..0..2....0..1..2..1....2..0..3..3....2..0..0..2....2..0..0..2
..0..0..3..0....3..2..0..3....3..1..1..1....3..2..2..3....1..1..1..3
		

Crossrefs

Column 1 is A007581(n-1)
Column 2 is A200795

Formula

Empirical for column k:
k=1: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
k=2: [order 8] for n>10
k=3: [order 20] for n>21
k=4: [order 74] for n>75
Previous Showing 21-30 of 40 results. Next