cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A278984 Array read by antidiagonals downwards: T(b,n) = number of words of length n over an alphabet of size b that are in standard order.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 14, 5, 2, 1, 1, 32, 41, 15, 5, 2, 1, 1, 64, 122, 51, 15, 5, 2, 1, 1, 128, 365, 187, 52, 15, 5, 2, 1, 1, 256, 1094, 715, 202, 52, 15, 5, 2, 1, 1, 512, 3281, 2795, 855, 203, 52, 15, 5, 2, 1, 1, 1024, 9842, 11051, 3845, 876, 203, 52, 15, 5, 2, 1
Offset: 1

Views

Author

Joerg Arndt and N. J. A. Sloane, Dec 05 2016

Keywords

Comments

We study words made of letters from an alphabet of size b, where b >= 1. We assume the letters are labeled {1,2,3,...,b}. There are b^n possible words of length n.
We say that a word is in "standard order" if it has the property that whenever a letter i appears, the letter i-1 has already appeared in the word. This implies that all words begin with the letter 1.
Let X be the random variable that assigns to each permutation of {1,2,...,b} (with uniform distribution) its number of fixed points (as in A008290). Then T(b,n) is the n-th moment about 0 of X, i.e., the expected value of X^n. - Geoffrey Critzer, Jun 23 2020

Examples

			The array begins:
1,.1,..1,...1,...1,...1,...1,....1..; b=1, A000012
1,.2,..4,...8,..16,..32,..64,..128..; b=2, A000079
1,.2,..5,..14,..41,.122,.365,.1094..; b=3, A007051 (A278985)
1,.2,..5,..15,..51,.187,.715,.2795..; b=4, A007581
1,.2,..5,..15,..52,.202,.855,.3845..; b=5, A056272
1,.2,..5,..15,..52,.203,.876,.4111..; b=6, A056273
...
The rows tend to A000110.
		

Crossrefs

Rows 1 through 16 of the array are: A000012, A000079, A007051 (or A124302), A007581 (or A124303), A056272, A056273, A099262, A099263, A164863, A164864, A203641-A203646.
The limit of the rows is A000110, the Bell numbers.
See A278985 for the words arising in row b=3.
Cf. A203647, A137855 (essentially same table).

Programs

  • Maple
    with(combinat);
    f1:=proc(L,b) local t1;i;
    t1:=add(stirling2(L,i),i=1..b);
    end:
    Q1:=b->[seq(f1(L,b), L=1..20)]; # the rows of the array are Q1(1), Q1(2), Q1(3), ...
  • Mathematica
    T[b_, n_] := Sum[StirlingS2[n, j], {j, 1, b}]; Table[T[b-n+1, n], {b, 1, 12}, {n, b, 1, -1}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)

Formula

The number of words of length n over an alphabet of size b that are in standard order is Sum_{j = 1..b} Stirling2(n,j).

A056273 Word structures of length n using a 6-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, 109299, 601492, 3403127, 19628064, 114700315, 676207628, 4010090463, 23874362200, 142508723651, 852124263684, 5101098232519, 30560194493456, 183176170057707, 1098318779272060, 6586964947803695, 39510014478620232, 237013033135668883
Offset: 0

Views

Author

Keywords

Comments

Set partitions of the n-set into at most 6 parts; also restricted growth strings (RGS) with six letters s(1),s(2),...,s(6) where the first occurrence of s(j) precedes the first occurrence of s(k) for all j < k. - Joerg Arndt, Jul 06 2011
Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4,5,6}^* (i.e., number of strings of length n in L) described by regular expression with c=6: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*) where Sum stands for union and Product for concatenation. - Nelma Moreira, Oct 10 2004
Word structures of length n using an N-ary alphabet are generated by taking M^n* the vector [(N 1's),0,0,0,...], leftmost column term = a(n+1). In the case of A056273, the vector = [1,1,1,1,1,1,0,0,0,...]. As the vector approaches all 1's, the leftmost column terms approach A000110, the Bell sequence. - Gary W. Adamson, Jun 23 2011
From Gary W. Adamson, Jul 06 2011: (Start)
Construct an infinite array of sequences representing word structures of length n using an N-ary alphabet as follows:
.
1, 1, 1, 1, 1, 1, 1, 1, ...; N=1, A000012
1, 2, 4, 8, 16, 32, 64, 128, ...; N=2, A000079
1, 2, 5, 14, 41, 122, 365, 1094, ...; N=3, A007051
1, 2, 5, 15, 51, 187, 715, 2795, ...; N=4, A007581
1, 2, 5, 15, 52, 202, 855, 3845, ...; N=5, A056272
1, 2, 5, 15, 52, 203, 876, 4111, ...; N=6, A056273
...
The sequences tend to A000110. Finite differences of columns reinterpreted as rows generate A008277 as a triangle: (1; 1,1; 1,3,1; 1,7,6,1; ...). (End)

Examples

			For a(4) = 15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

A row of the array in A278984 and A320955.
Cf. A056325 (unoriented), A320936 (chiral), A305752 (chiral).

Programs

  • GAP
    List([0..25],n->Sum([0..6],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
    
  • Magma
    [(&+[StirlingSecond(n, i): i in [0..6]]): n in [0..30]]; // Vincenzo Librandi, Nov 07 2018
  • Maple
    egf := (265+264*exp(x)+135*exp(x*2)+40*exp(x*3)+15*exp(x*4)+exp(6*x))/6!:
    ser := series(egf,x,30): seq(n!*coeff(ser,x,n),n=0..22); # Peter Luschny, Nov 06 2018
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,6}],{n,0,30}] (* or *) LinearRecurrence[ {16,-95,260,-324,144},{1,1,2,5,15,52},30] (* Harvey P. Dale, Jun 05 2015 *)
  • PARI
    Vec((1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Nov 07 2018
    

Formula

a(n) = Sum_{k=0..6} Stirling2(n, k).
For n > 0, a(n) = (1/6!)*(6^n + 15*4^n + 40*3^n + 135*2^n + 264). - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For n > 0 and c = 6:
a(n) = (c^n)/c! + Sum_{k=0..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))).
a(n) = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1) = 1; g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! if c>1. For 2 <= k <= c: g(k, c) = g(k-1, c-1)/k if c>1. (End)
G.f.: (1 - 15*x + 81*x^2 - 192*x^3 + 189*x^4 - 53*x^5)/((1-x)*(1-2x)*(1-3x)*(1-4x)*(1-6x)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009 [corrected by R. J. Mathar, Sep 16 2009] [Adapted to offset 0 by Robert A. Russell, Nov 06 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=6. - Robert A. Russell, Apr 25 2018
E.g.f.: (265 + 264*exp(x) + 135*exp(x*2) + 40*exp(x*3) + 15*exp(x*4) + exp(6*x))/6!. - Peter Luschny, Nov 06 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 06 2018

A164864 Number of ways of placing n labeled balls into 10 indistinguishable boxes; word structures of length n using a 10-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213530, 27641927, 190829797, 1381367941, 10448276360, 82285618467, 672294831619, 5676711562593, 49344452550230, 439841775811967, 4005444732928641, 37136385907400125, 349459367068932740
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2009

Keywords

Crossrefs

Programs

  • Maple
    # First program:
    a:= n-> ceil(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800): seq(a(n), n=0..25);
    # second program:
    a:= n-> add(Stirling2(n, k), k=0..10): seq(a(n), n=0..25);
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,10}],{n,0,30}] (* Harvey P. Dale, Nov 22 2023 *)

Formula

a(n) = Sum_{k=0..10} Stirling2 (n,k).
a(n) = ceiling(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800).
G.f.: (148329*x^9 -613453*x^8 +855652*x^7 -596229*x^6 +240065*x^5 -59410*x^4 +9177*x^3 -862*x^2 +45*x-1) / ((10*x-1) *(8*x-1) *(7*x-1) *(6*x-1) *(5*x-1) *(4*x-1) *(3*x-1) *(2*x-1) *(x-1)).
a(n) <= A000110(n) with equality only for n <= 10.

A203647 T(n,k) = number of arrays of n 0..k integers with new values introduced in order 0..k but otherwise unconstrained. Array read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 5, 8, 1, 2, 5, 14, 16, 1, 2, 5, 15, 41, 32, 1, 2, 5, 15, 51, 122, 64, 1, 2, 5, 15, 52, 187, 365, 128, 1, 2, 5, 15, 52, 202, 715, 1094, 256, 1, 2, 5, 15, 52, 203, 855, 2795, 3281, 512, 1, 2, 5, 15, 52, 203, 876, 3845, 11051, 9842, 1024, 1, 2, 5, 15, 52, 203, 877
Offset: 1

Views

Author

R. H. Hardin, Jan 04 2012

Keywords

Comments

Table starts
....1.....1......1......1......1......1......1......1......1......1......1
....2.....2......2......2......2......2......2......2......2......2......2
....4.....5......5......5......5......5......5......5......5......5......5
....8....14.....15.....15.....15.....15.....15.....15.....15.....15.....15
...16....41.....51.....52.....52.....52.....52.....52.....52.....52.....52
...32...122....187....202....203....203....203....203....203....203....203
...64...365....715....855....876....877....877....877....877....877....877
..128..1094...2795...3845...4111...4139...4140...4140...4140...4140...4140
..256..3281..11051..18002..20648..21110..21146..21147..21147..21147..21147
..512..9842..43947..86472.109299.115179.115929.115974.115975.115975.115975
.1024.29525.175275.422005.601492.665479.677359.678514.678569.678570.678570
Lower left triangular part seems to be A102661. - R. J. Mathar, Nov 29 2015

Examples

			Some solutions for n=7, k=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....1....1....0....0....1....1....1....1....1....1....1....1
..1....0....2....1....2....2....1....1....2....2....2....2....1....2....1....2
..0....1....1....0....3....3....2....2....1....3....1....1....1....0....0....2
..0....0....3....1....0....4....3....0....2....3....1....1....1....0....2....1
..2....2....4....2....2....0....4....2....0....2....2....3....2....3....2....0
..1....3....1....0....2....5....0....0....0....0....0....2....2....1....1....1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A007051(n-1).
Column 3 is A007581(n-1).
Column 4 is A056272.
Column 5 is A056273.
Column 6 is A099262.
Column 7 is A099263.
Column 8 is A164863.
Column 9 is A164864.
Column 10 is A203641.
Column 11 is A203642.
Column 12 is A203643.
Column 13 is A203644.
Column 14 is A203645.
Column 15 is A203646.
Diagonal is A000110.

Programs

  • Maple
    T:= proc(n,k) option remember;  if k = 1 then 2^(n-1)
    else 1 + add(binomial(n-1,j-1)*procname(n-j,k-1),j=1..n-1)
    fi
    end proc:
    seq(seq(T(k,m-k),k=1..m-1),m=2..10); # Robert Israel, May 20 2016
  • Mathematica
    T[n_, k_] := Sum[StirlingS2[n, j], {j, 1, k+1}]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)

Formula

T(n,k) = Sum_{j = 1..k+1} Stirling2(n,j). - Andrew Howroyd, Mar 19 2017
T(n,k) = A278984(k+1, n). - Andrew Howroyd, Mar 19 2017
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -3*a(n-2)
k=3: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
k=4: a(n) = 11*a(n-1) -41*a(n-2) +61*a(n-3) -30*a(n-4)
k=5: a(n) = 16*a(n-1) -95*a(n-2) +260*a(n-3) -324*a(n-4) +144*a(n-5)
k=6: a(n) = 22*a(n-1) -190*a(n-2) +820*a(n-3) -1849*a(n-4) +2038*a(n-5) -840*a(n-6)
k=7: a(n) = 29*a(n-1) -343*a(n-2) +2135*a(n-3) -7504*a(n-4) +14756*a(n-5) -14832*a(n-6) +5760*a(n-7)
k=8: a(n) = 37*a(n-1) -574*a(n-2) +4858*a(n-3) -24409*a(n-4) +74053*a(n-5) -131256*a(n-6) +122652*a(n-7) -45360*a(n-8)
k=9: a(n) = 46*a(n-1) -906*a(n-2) +9996*a(n-3) -67809*a(n-4) +291774*a(n-5) -790964*a(n-6) +1290824*a(n-7) -1136160*a(n-8) +403200*a(n-9)
k=10: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10)
k=11: a(n) = 67*a(n-1) -1980*a(n-2) +33990*a(n-3) -375573*a(n-4) +2795331*a(n-5) -14241590*a(n-6) +49412660*a(n-7) -113667576*a(n-8) +163671552*a(n-9) -131172480*a(n-10) +43545600*a(n-11)
k=12: a(n) = 79*a(n-1) -2783*a(n-2) +57695*a(n-3) -782133*a(n-4) +7284057*a(n-5) -47627789*a(n-6) +219409685*a(n-7) -703202566*a(n-8) +1519272964*a(n-9) -2082477528*a(n-10) +1606986720*a(n-11) -518918400*a(n-12)
k=13: a(n) = 92*a(n-1) -3809*a(n-2) +93808*a(n-3) -1530243*a(n-4) +17419116*a(n-5) -141963107*a(n-6) +835933384*a(n-7) -3542188936*a(n-8) +10614910592*a(n-9) -21727767984*a(n-10) +28528276608*a(n-11) -21289201920*a(n-12) +6706022400*a(n-13)
k=14: a(n) = 106*a(n-1) -5096*a(n-2) +147056*a(n-3) -2840838*a(n-4) +38786748*a(n-5) -385081268*a(n-6) +2816490248*a(n-7) -15200266081*a(n-8) +59999485546*a(n-9) -169679309436*a(n-10) +331303013496*a(n-11) -418753514880*a(n-12) +303268406400*a(n-13) -93405312000*a(n-14)
k=15: a(n) = 121*a(n-1) -6685*a(n-2) +223405*a(n-3) -5042947*a(n-4) +81308227*a(n-5) -965408015*a(n-6) +8576039615*a(n-7) -57312583328*a(n-8) +287212533608*a(n-9) -1066335473840*a(n-10) +2866534951280*a(n-11) -5367984964224*a(n-12) +6557974412544*a(n-13) -4622628648960*a(n-14) +1394852659200*a(n-15)
From Robert Israel, May 20 2016: (Start)
T(n,k) = 1 + Sum_{j=1..n-1} binomial(n-1,j-1)*T(n-j,k-1).
G.f. for columns g_k(z) satisfies g_k(z) = (z/(1-z))*(1+ g_{k-1}(z/(1-z))) with g_1(z) = z/(1-2z).
Thus g_k is a rational function: it has a simple pole at z=1/j for 1<=j<=k+1 except j=k, and it has a finite limit at infinity (so the degree of the numerator is k). This implies that column k satisfies the recurrences listed above, whose coefficients correspond to the expansion of (z-1/(k+1))* Product_{j=1..k-1}(z - 1/j).
(End)

A099262 a(n) = (1/5040)*7^n + (1/240)*5^n + (1/72)*4^n + (1/16)*3^n + (11/60)*2^n + 53/144. Partial sum of Stirling numbers of second kind S(n,i), i=1..7 (i.e., a(n) = Sum_{i=1..7} S(n,i)).

Original entry on oeis.org

1, 2, 5, 15, 52, 203, 877, 4139, 21110, 115179, 665479, 4030523, 25343488, 164029595, 1084948961, 7291973067, 49582466986, 339971207051, 2345048898523, 16244652278171, 112871151708404, 785938550025147, 5480960778389365, 38264428799608235, 267342497477336542, 1868866831126685483
Offset: 1

Views

Author

Nelma Moreira, Oct 10 2004

Keywords

Comments

Density of regular language L over {1,2,3,4,5,6,7} (i.e., number of strings of length n in L) described by regular expression with c=7: Sum_{i=1..c} Product_{j=1..i} (j(1+...+j)*) where Sum stands for union and Product for concatenation.

Crossrefs

A row of the array in A278984.

Programs

  • Mathematica
    Table[Sum[StirlingS2[n, k], {k, 0, 7}], {n, 1, 30}] (* Robert A. Russell, Apr 25 2018 *)
  • PARI
    a(n) = (1/5040)*7^n + (1/240)*5^n + (1/72)*4^n + (1/16)*3^n + (11/60)*2^n + 53/144; \\ Altug Alkan, Apr 25 2018

Formula

For c=7, a(n) = (c^n)/c! + Sum_{k=1..c-2} ((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))) or = Sum_{k=1..c} (g(k, c)*k^n) where g(1, 1)=1, g(1, c) = g(1, c-1)+((-1)^(c-1))/(c-1)!, c > 1, g(k, c) = g(k-1, c-1)/k, for c > 1 and 2 <= k <= c.
G.f.: -x*(531*x^5-881*x^4+535*x^3-151*x^2+20*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Dec 05 2012
a(n) = Sum_{k=0..7} Stirling2(n,k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=7. - Robert A. Russell, Apr 25 2018

Extensions

More terms from Michel Marcus, Jan 05 2025

A209527 T(n,k)=Number of nXk 0..7 arrays with every 2X2 subblock containing exactly one value repeat, and new values 0..7 introduced in row major order.

Original entry on oeis.org

1, 2, 2, 5, 6, 5, 15, 57, 57, 15, 52, 700, 2027, 700, 52, 203, 10677, 107693, 107693, 10677, 203, 877, 193676, 7700397, 27323948, 7700397, 193676, 877, 4140, 4054358, 687132348, 9700576474, 9700576474, 687132348, 4054358, 4140, 21146, 95534880
Offset: 1

Views

Author

R. H. Hardin Mar 10 2012

Keywords

Comments

Table starts
....1........2.............5.................15.......................52
....2........6............57................700....................10677
....5.......57..........2027.............107693..................7700397
...15......700........107693...........27323948...............9700576474
...52....10677.......7700397.........9700576474...........16484968944748
..203...193676.....687132348......4194606038254........31813625228165210
..877..4054358...71519658191...2002617518101082.....64398780661554524050
.4140.95534880.8190834795146.999998646599976052.132601740316897661044124

Examples

			Some solutions for n=5 k=3
..0..0..0....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0....0..1..0
..1..2..1....1..2..1....1..2..1....1..2..0....1..2..2....1..2..3....0..2..0
..2..0..0....0..0..0....0..0..1....1..0..3....0..0..1....1..0..0....0..1..0
..0..3..1....1..2..1....1..2..0....0..2..0....1..2..0....0..2..3....0..2..1
..3..1..0....0..1..0....0..0..1....0..1..0....0..0..1....2..3..0....1..2..0
		

Crossrefs

Column 1 is A099263

A164863 Number of ways of placing n labeled balls into 9 indistinguishable boxes; word structures of length n using a 9-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678514, 4211825, 27602602, 190077045, 1368705291, 10254521370, 79527284317, 635182667816, 5199414528808, 43426867585575, 368654643520692, 3170300933550687, 27542984610086665, 241205285284001240
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2009

Keywords

Crossrefs

Programs

  • Maple
    # first program:
    a:= n-> ceil(103/560*2^n +53/864*3^n +11/720*4^n +5^n/320 +6^n/2160 +7^n/10080 +9^n/362880): seq(a(n), n=0..25);
    # second program:
    a:= n-> add(Stirling2(n, k), k=0..9): seq(a(n), n=0..25);
  • Mathematica
    Table[Sum[StirlingS2[n, k], {k, 0, 9}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)

Formula

a(n) = Sum_{k=0..9} stirling2 (n,k).
a(n) = ceiling (103/560*2^n +53/864*3^n +11/720*4^n +5^n/320 +6^n/2160 +7^n/10080 +9^n/362880).
G.f.: (16687*x^8 -67113*x^7 +88620*x^6 -56993*x^5 +20529*x^4 -4353*x^3 +539*x^2 -36*x+1) / ((9*x-1) *(7*x-1) *(6*x-1) *(5*x-1) *(4*x-1) *(3*x-1) *(2*x-1) *(x-1)).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=9. - Robert A. Russell, Apr 25 2018
Showing 1-7 of 7 results.