cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A114271 Numbers k such that k^2 + 8 is prime.

Original entry on oeis.org

3, 9, 15, 21, 33, 51, 57, 81, 87, 111, 117, 123, 129, 135, 141, 147, 153, 177, 189, 213, 219, 255, 279, 285, 315, 321, 327, 345, 351, 363, 399, 417, 465, 471, 477, 483, 495, 549, 579, 585, 627, 657, 663, 669, 723, 735, 741, 747, 759, 771, 783, 789, 807, 825
Offset: 1

Views

Author

Zak Seidov, Nov 19 2005

Keywords

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), A049422 (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), this sequence (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

A113536 Numbers k such that k^2 + 13 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 16, 18, 28, 40, 42, 44, 46, 60, 68, 72, 82, 84, 88, 94, 108, 110, 114, 116, 122, 126, 142, 144, 152, 158, 180, 192, 194, 198, 200, 220, 222, 264, 266, 268, 282, 284, 296, 298, 332, 336, 340, 354, 378, 380, 418, 420, 430, 434, 446, 464, 466, 486
Offset: 1

Views

Author

Zak Seidov, Jan 13 2006

Keywords

Examples

			If n=40 then n^2 + 13 = 1613 (prime), so 40 is in the sequence.
		

Crossrefs

Other cases: A005574 k=1, A067201 k=2, A049422 k=3, A007591 k=4, A078402 k=5, A114269-A114275 k=6-12.

Programs

  • Mathematica
    With[{k=13}, Select[Range[1000], PrimeQ[ #^2+k]&]]
  • PARI
    is(n)=isprime(n^2+13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Edited by R. J. Mathar, Aug 07 2008

A086381 Numbers n such that p=n^2+2 and p+2 are primes.

Original entry on oeis.org

1, 3, 15, 33, 45, 57, 117, 147, 243, 255, 303, 375, 423, 447, 453, 477, 573, 753, 837, 897, 903, 1035, 1497, 1905, 2055, 2085, 2193, 2283, 2433, 2487, 2535, 2583, 2757, 2823, 2943, 2955, 3003, 3213, 3285, 3345, 3603, 3657, 3687, 4407, 4575, 4977, 5037, 5043, 5325, 5355, 5367, 5403, 5727
Offset: 1

Views

Author

Zak Seidov, Sep 07 2003

Keywords

Comments

The twin primes are given by A253639 and A085554. Except for the initial term, all a(n)=3 (mod 6). - M. F. Hasler, Jan 16 2015

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]|IsPrime(n^2+2) and IsPrime(n^2+4)] // Vincenzo Librandi, Dec 16 2010
    
  • PARI
    is_A086381(x)=ispseudoprime(x^2+2)&&ispseudoprime(x^2+4)
    forstep(x=1,9999,2,is_A086381(x)&&print1(x",")) \\ M. F. Hasler, Jan 16 2015

Formula

Intersection of A067201 and A007591. - M. F. Hasler, Jan 19 2015

Extensions

More terms from Vincenzo Librandi, Dec 16 2010

A121982 Numbers k such that k^2 + 15 is prime.

Original entry on oeis.org

2, 4, 8, 14, 16, 22, 26, 32, 34, 38, 44, 46, 52, 64, 68, 76, 86, 88, 98, 104, 106, 124, 134, 158, 172, 178, 184, 196, 202, 206, 212, 236, 238, 242, 248, 256, 262, 272, 284, 296, 298, 304, 316, 322, 326, 328, 338, 356, 362, 364, 374, 386, 388, 394, 398, 452, 472
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 09 2006

Keywords

Examples

			If k=104 then k^2 + 15 = 10831 (prime).
		

Crossrefs

Programs

A121250 Numbers n such that n^2 + 14 is prime.

Original entry on oeis.org

3, 15, 27, 33, 45, 75, 87, 93, 165, 183, 195, 207, 243, 285, 297, 303, 345, 363, 375, 405, 435, 453, 495, 513, 537, 573, 585, 615, 627, 633, 657, 663, 717, 813, 843, 975, 1053, 1065, 1083, 1095, 1125, 1137, 1167, 1203, 1287, 1317, 1335, 1353, 1413, 1437, 1455
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 06 2006

Keywords

Examples

			If n=183 then n^2 + 14 = 33503 (prime).
		

Crossrefs

Programs

A242332 Numbers k such that k^2 + 4 is a semiprime.

Original entry on oeis.org

0, 9, 19, 21, 23, 25, 31, 41, 43, 51, 53, 55, 63, 69, 71, 75, 77, 79, 83, 91, 93, 105, 107, 109, 113, 119, 123, 129, 131, 133, 143, 145, 149, 151, 153, 157, 165, 171, 173, 175, 181, 185, 187, 191, 195, 197, 201, 209, 221, 223, 225, 227, 241, 249, 251, 257, 259
Offset: 1

Views

Author

Vincenzo Librandi, May 14 2014

Keywords

Comments

The semiprimes of this form are: 4, 85, 365, 445, 533, 629, 965, 1685, 1853, 2605, 2813, 3029, 3973, 4765, 5045, 5629, 5933, 6245, ...

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [n: n in [0..300] | IsSemiprime(s) where s is n^2+4];
  • Mathematica
    Select[Range[0, 300], PrimeOmega[#^2 + 4] == 2 &]

A263722 Integers k > 0 such that k^2 + p^2 is composite for all primes p.

Original entry on oeis.org

9, 11, 19, 21, 23, 25, 29, 31, 39, 41, 43, 49, 51, 53, 55, 59, 61, 63, 69, 71, 75, 77, 79, 81, 83, 89, 91, 93, 99, 101, 105, 107, 109, 111, 113, 119, 121, 123, 127, 129, 131, 133, 139, 141, 143, 145, 149, 151, 153, 157, 159, 161, 165, 169, 171, 173, 175, 179, 181, 185, 187, 189, 191, 195, 197, 199
Offset: 1

Author

Keywords

Comments

Conjecture: All terms are odd. An equivalent conjecture in A263977 is that if k > 0 is even, then k^2 + p^2 is prime for some prime p. We have checked this for all k <= 12*10^7.
An odd number k is a term if and only if k^2 + 2^2 is composite, since k^2 + p^2 is even and > 2 (hence composite) for all odd primes p. Thus if the Conjecture is true, then the sequence is simply odd k such that k^2 + 4 is composite. The sequence of odd k, such that k^2 + 4 is prime, is A007591.
The complementary sequence is A263977. Given k in it, the smallest prime p, such that k^2 + p^2 is prime, is in A263726. These numbers k^2 + p^2 form A185086, the Fouvry-Iwaniec primes.

Examples

			9^2 + 2^2 = 85 = 5*17, 11^2 + 2^2 = 125 = 5^3, and 23^2 + 2^2 = 533 = 13*41 are composite, so 9, 11, and 23 are members.
1^2 + 2^2 = 5 and 2^2 + 3^3 = 13 are prime, so 1, 2, and 3 are not members.
		

A246519 Primes p such that 4+p, 4+p^2, 4+p^3 and 4+p^5 are all prime.

Original entry on oeis.org

7, 5503, 21013, 301123, 303613, 420037, 469363, 679153, 771427, 991957, 999667, 1524763, 1707367, 2030653, 2333083, 2540563, 2552713, 2710933, 3009967, 3378103, 3441817, 3592213, 4419937, 4704613, 4840723, 5177797, 5691547, 6227587, 6275887, 6395677, 6595597, 6597163
Offset: 1

Author

Zak Seidov, Aug 28 2014

Keywords

Comments

For even k > 2, 4 + n^k is prime only for n = 1.
From Derek Orr, Aug 28 2014 (edited by Danny Rorabaugh, Apr 19 2015): (Start)
4+p^4 is composite for all primes p. For p = 2, 4+p^4 = 20 is composite. To prove it for odd primes, consider S(n) = 4+(2*n+1)^4. S(n) == 0 (mod 5) unless n == 2 (mod 5). If n == 2 (mod 5), then 2*n+1 == 0 (mod 5), which is only prime for n = 2; this gives p = 5 and 4+5^4 = 629 is composite. For other odd primes p, 4+p^4 is greater than 5 and divisible by 5.
4+p^(4*m) is also composite for any prime p and integer m > 0. For each m, the proof is the same as above.
(End)
All terms are == {3,7} (mod 10). - Zak Seidov, Aug 29 2014

Examples

			From _K. D. Bajpai_, Jan 20 2015: (Start)
a(2) = 5503:
4 + 5503 = 5507;
4 + 5503^2 = 30283013;
4 + 5503^3 = 166647398531;
4 + 5503^5 = 5046584669419727747;
all five are prime.
(End)
		

Crossrefs

Primes p such that 4+p^7, 4+p^9 and 4+p^11 are also prime is A253937. - K. D. Bajpai, Jan 20 2015
The subsequence with 4+p^7 also prime is A246562. - Danny Rorabaugh, Apr 19 2015

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^7) | IsPrime(4+p) and IsPrime(4+p^2) and IsPrime(4+p^3) and IsPrime(4+p^5)]; // Vincenzo Librandi, Apr 19 2015
  • Mathematica
    k=4; Select[Prime[Range[1,500000]], PrimeQ[k+#]&&PrimeQ[k+#^2] &&PrimeQ[k+#^3] &&PrimeQ[k+#^5]&]  (*K. D. Bajpai, Jan 20 2015 *)
  • PARI
    for(n=1, 6000000, if(isprime(n) && isprime(4+n) && isprime(4+n^2) && isprime(4+n^3) && isprime(4+n^5), print1(n, ", "))) \\ Colin Barker, Aug 28 2014
    
  • PARI
    p=7; forprime(q=11, 1e8, if(q-p==4 && isprime(4+p^2) && isprime(4+p^3) && isprime(4+p^5), print1(p, ", ")); p=q) \\ Charles R Greathouse IV, Aug 28 2014
    
  • Python
    from sympy import prime, isprime
    A246519_list = [p for p in (prime(n) for n in range(1,10**5)) if all([isprime(4+p**z) for z in (1,2,3,5)])]
    # Chai Wah Wu, Sep 08 2014
    

A263977 Integers k > 0 such that k^2 + p^2 is prime for some prime p.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 37, 38, 40, 42, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 106, 108, 110, 112, 114, 115, 116, 117, 118, 120, 122, 124, 125, 126
Offset: 1

Author

Keywords

Comments

The smallest such prime p is in A263726.
Complement of A263722.
An odd number k is a member if and only if k^2 + 4 is prime; see A007591.
Conjecture: Every even number k is a member. (This is equivalent to the Conjecture in A263722.) We have checked this for all k <= 12*10^7.

Examples

			1^2 + 2^2 = 5, and 2 and 5 are prime, so a(1) = 1.
9^2 + p^2 is composite for all primes p, so 9 is not a member.
		

Programs

  • Mathematica
    fQ[n_] := Block[{p = 2}, While[ !PrimeQ[n^2 + p^2] && p < 1500, p = NextPrime@ p]; If[p > 1500, 0, p]]; lst = {}; k = 1; While[k < 130, If[fQ@ k > 0, AppendTo[lst, k]]; k++]; lst

A098062 Primes of the form n^2 + 4n + 8.

Original entry on oeis.org

13, 29, 53, 173, 229, 293, 733, 1093, 1229, 1373, 2029, 2213, 3253, 4229, 4493, 5333, 7229, 7573, 9029, 9413, 10613, 13229, 13693, 15629, 18229, 18773, 21613, 24029, 26573, 27893, 31333, 33493, 37253, 41213, 42853, 46229, 47093, 54293, 55229
Offset: 1

Author

Giovanni Teofilatto, Sep 12 2004

Keywords

Comments

Or, primes that are equal to the mean of 7 consecutive squares. - Zak Seidov, Apr 14 2007
Sum of 7 consecutive squares starting with m^2 is equal to 7*(13 + 6*m + m^2) and mean is (13 + 6*m + m^2)=(m+3)^2+4. Hence a(n)=A005473(n+1). Note that only nonnegative m's are considered. - Zak Seidov, Apr 14 2007
a(n)==1 (mod 4).
a(n)= A005473(n+1). - Zak Seidov, Apr 12 2007

Examples

			13 = (0^2 + ... + 6^2)/7, 29 = (2^2 + ... + 8^2)/7 = 29, 53 = (4^2 + ... + 10^2)/7 = 53.
		

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is n^2 + 4*n + 8]; // Vincenzo Librandi, Jul 17 2012
  • Mathematica
    Select[ Table[ n^2 + 4n + 8, {n, 240}], PrimeQ[ # ] &] (* Robert G. Wilson v, Sep 14 2004 *)
  • PARI
    for(n=0,240,if(isprime(p=n^2+4*n+8),print1(p,","))) \\ Klaus Brockhaus
    

Extensions

Edited, corrected and extended by Robert G. Wilson v and Klaus Brockhaus, Sep 14 2004
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
Previous Showing 11-20 of 27 results. Next