cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A083322 a(n) = 2^n - A081374(n).

Original entry on oeis.org

1, 2, 6, 11, 22, 42, 85, 170, 342, 683, 1366, 2730, 5461, 10922, 21846, 43691, 87382, 174762, 349525, 699050, 1398102, 2796203, 5592406, 11184810, 22369621, 44739242, 89478486, 178956971, 357913942, 715827882, 1431655765, 2863311530, 5726623062
Offset: 1

Views

Author

David Applegate, Aug 22 2003

Keywords

Crossrefs

Cf. A081374.
Trisections: A082365, A007613, A132804.

Programs

  • Magma
    I:=[1,2,6,11]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-3)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 08 2016
  • Mathematica
    CoefficientList[Series[(1 + 2 x^2) / ((1 - 2 x) (1 + x) (1 - x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2016 *)
    LinearRecurrence[{2,0,-1,2},{1,2,6,11},40] (* Harvey P. Dale, Jan 30 2024 *)

Formula

G.f.: x*(1+2*x^2) / ( (1-2*x)*(1+x)*(1-x+x^2) ). - R. J. Mathar, May 27 2011
From Paul Curtz, May 27 2011: (Start)
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4).
a(n)+a(n+3) = 3*2^(n+1) = A007283(n+1).
a(n+6)-a(n) = 21*2^(n+1) = A175805(n+1).
(End)

A139459 Triangle read by rows: binomial(3*n,3*k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 20, 1, 1, 84, 84, 1, 1, 220, 924, 220, 1, 1, 455, 5005, 5005, 455, 1, 1, 816, 18564, 48620, 18564, 816, 1, 1, 1330, 54264, 293930, 293930, 54264, 1330, 1, 1, 2024, 134596, 1307504, 2704156, 1307504, 134596, 2024, 1, 1, 2925, 296010, 4686825, 17383860, 17383860, 4686825, 296010, 2925, 1
Offset: 0

Views

Author

Gary W. Adamson, Apr 22 2008

Keywords

Comments

ConvOffsStoT transform of the dodecahedral numbers A006566 starting (1, 20, 84, 220,...).
Row sums give A007613.
The matrix inverse starts:
1;
-1,1;
19,-20,1;
-1513,1596,-84,1;
315523,-332860,17556,-220,1;
-136085041,143562965,-7572565,95095,-455,1;
105261234643,-111045393456,5857368972,-73562060,352716,-816,1; - R. J. Mathar, Mar 22 2013

Examples

			First few rows of the triangle are:
  [0] 1;
  [1] 1,   1;
  [2] 1,  20,     1;
  [3] 1,  84,    84,     1;
  [4] 1, 220,   924,   220,     1;
  [5] 1, 455,  5005,  5005,   455,   1;
  [6] 1, 816, 18564, 48620, 18564, 816, 1;
  ...
Row 5 = (1, 220, 924, 220, 1) = ConvOffs transform of (1, 20, 84, 220); where A006566 = (0, 1, 20, 84, 220, 455, ...).
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[3*n, 3*k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 01 2025 *)

Extensions

More terms from Amiram Eldar, Jun 01 2025

A326474 A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^n, for m = 3, n >= 0, k >= 0; square array read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 22, 3, 1, 0, 1, 170, 63, 4, 1, 0, 1, 1366, 2187, 124, 5, 1, 0, 1, 10922, 59535, 7732, 205, 6, 1, 0, 1, 87382, 1594323, 599548, 18485, 306, 7, 1, 0, 1, 699050, 43033599, 39945364, 2416045, 36126, 427, 8, 1
Offset: 0

Views

Author

Peter Luschny, Jul 08 2019

Keywords

Examples

			Array starts:
[0] 1, 0,   0,     0,       0,          0,            0, ... A000007
[1] 1, 1,   1,     1,       1,          1,            1, ... A000012
[2] 1, 2,  22,   170,    1366,      10922,        87382, ... A007613
[3] 1, 3,  63,  2187,   59535,    1594323,     43033599, ...
[4] 1, 4, 124,  7732,  599548,   39945364,   2556712828, ...
[5] 1, 5, 205, 18485, 2416045,  352060805,  46660373965, ...
[6] 1, 6, 306, 36126, 6673266, 1544907006, 379696000626, ...
      A051874,
		

Crossrefs

Rows include: A000007, A000012, A007613.
Columns include: A051874.
Cf. A326476 (m=2, p>=0), A326327 (m=2, p<=0), this sequence (m=3, p>=0), A326475 (m=3, p<=0).

Programs

  • Mathematica
    (* The function MLPower is defined in A326327. *)
    For[n = 0, n < 8, n++, Print[MLPower[3, n, 8]]]
  • Sage
    # uses[MLPower from A326327]
    for n in (0..6): print(MLPower(3, n, 9))

A361043 Array read by descending antidiagonals. A(n, k) is, if n > 0, the number of multiset permutations of {0, 1} of length n * k where the number of occurrences of 1 are multiples of n. A(0, k) = k + 1.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 8, 8, 2, 1, 6, 16, 32, 22, 2, 1, 7, 32, 128, 170, 72, 2, 1, 8, 64, 512, 1366, 992, 254, 2, 1, 9, 128, 2048, 10922, 16512, 6008, 926, 2, 1, 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1, 11, 512, 32768, 699050, 4196352, 6643782, 2973350, 232562, 12872, 2, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2023

Keywords

Comments

Because of the interchangeability of 0 and 1 in the definition, A(n, k) is even if n, k >= 1. In other words, if the binary representation of a permutation of the defined type is counted, then so is the 1's complement of that representation.

Examples

			Array A(n, k) starts:
 [0] 1, 2,    3,      4,        5,          6,            7, ...  A000027
 [1] 1, 2,    4,      8,       16,         32,           64, ...  A000079
 [2] 1, 2,    8,     32,      128,        512,         2048, ...  A081294
 [3] 1, 2,   22,    170,     1366,      10922,        87382, ...  A007613
 [4] 1, 2,   72,    992,    16512,     261632,      4196352, ...  A070775
 [5] 1, 2,  254,   6008,   215766,    6643782,    215492564, ...  A070782
 [6] 1, 2,  926,  37130,  2973350,  174174002,  11582386286, ...  A070967
 [7] 1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, ...  A094211
.
Triangle T(n, k) starts:
 [0]  1;
 [1]  2,   1;
 [2]  3,   2,    1;
 [3]  4,   4,    2,     1;
 [4]  5,   8,    8,     2,      1;
 [5]  6,  16,   32,    22,      2,      1;
 [6]  7,  32,  128,   170,     72,      2,     1;
 [7]  8,  64,  512,  1366,    992,    254,     2,    1;
 [8]  9, 128, 2048, 10922,  16512,   6008,   926,    2, 1;
 [9] 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1;
.
A(2, 2) = 8 = card(0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111).
A(1, 3) = 8 = card(000, 100, 010, 001, 110, 101, 011, 111).
		

Crossrefs

Rows: A000027 (n=0), A000079 (n=1), A081294 (n=2), A007613 (n=3), A070775 (n=4), A070782 (n=5), A070967 (n=6), A094211 (n=7), A070832 (n=8), A094213 (n=9), A070833 (n=10).
Variant: A308500 (upwards antidiagonals).
Cf. A167009 (main diagonal).

Programs

  • Maple
    T := (n, k) -> add(binomial((n - k)*k, j*k), j = 0 .. n-k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
  • SageMath
    # In Python use this import:
    # from sympy.utilities.iterables import multiset_permutations
    def A(n: int, k: int) -> int:
        if n == 0: return k + 1
        count = 0
        for a in range(0, n * k + 1, n):
            S = [i < a for i in range(n * k)]
            count += Permutations(S).cardinality()
        return count
    def ARow(n: int, size: int) -> list[int]:
        return [A(n, k) for k in range(size)]
    for n in range(6): print(ARow(n, 5))

Formula

A(n, k) = Sum_{j=0..k} binomial(n*k, n*j).
T(n, k) = Sum_{j=0..n-k} binomial((n - k)*k, j*k).

A090409 a(n) = (7*8^n + 2*(-1)^n)/9.

Original entry on oeis.org

1, 6, 50, 398, 3186, 25486, 203890, 1631118, 13048946, 104391566, 835132530, 6681060238, 53448481906, 427587855246, 3420702841970, 27365622735758, 218924981886066, 1751399855088526, 14011198840708210, 112089590725665678, 896716725805325426, 7173733806442603406
Offset: 0

Views

Author

Paul Barry, Nov 29 2003

Keywords

Crossrefs

First differences of A015565.

Programs

  • Mathematica
    LinearRecurrence[{7,8},{1,6},20] (* Harvey P. Dale, Aug 15 2016 *)

Formula

a(n) = Sum_{j=0..2} Sum_{k=0..n} C(3*n+j, 3*k)/3.
a(n) = (A007613(n) + A082311(n) + A082365(n))/3.
G.f.: (-1+x)/((1+x)*(8*x-1)). - R. J. Mathar, Dec 10 2014
From Elmo R. Oliveira, Aug 18 2024: (Start)
E.g.f.: exp(-x)*(7*exp(9*x) + 2)/9.
a(n) = 7*a(n-1) + 8*a(n-2) for n > 1. (End)

Extensions

a(20)-a(21) from Elmo R. Oliveira, Aug 18 2024

A216317 G.f.: 1/( (1-8*x)*(1+x)^2 )^(1/6).

Original entry on oeis.org

1, 1, 6, 34, 217, 1449, 9996, 70512, 505674, 3672682, 26943748, 199284540, 1483955746, 11113108930, 83628685440, 631963708200, 4793067536265, 36469419494985, 278278625232510, 2128794954411930, 16322188021280505, 125405739232800585, 965313101906567700
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 34*x^3 + 217*x^4 + 1449*x^5 + 9996*x^6 +...
where 1/A(x)^6 = 1 - 6*x - 15*x^2 - 8*x^3.
The logarithm of the g.f. begins:
log(A(x)) = x + 11*x^2/2 + 85*x^3/3 + 683*x^4/4 + 5461*x^5/5 + 43691*x^6/6 +...+ A007613(n)/2*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-8*x)*(1+x)^2)^(1/6), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n)=polcoeff(1/( (1-8*x)*(1+x)^2 +x*O(x^n) )^(1/6),n)}
    
  • PARI
    {a(n)=local(A=1+x); A=exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, 3*j))/2*x^m/m +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} A007613(n)/2 * x^n/n ) where A007613(n) = Sum_{k=0..n} binomial(3*n,3*k).
Recurrence: n*a(n) = (7*n-6)*a(n-1) + 4*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ Gamma(5/6)*8^n/(3^(2/3)*Pi*n^(5/6)). - Vaclav Kotesovec, Oct 20 2012

A308500 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=0..n} binomial(k*n,k*j).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 8, 8, 5, 1, 2, 22, 32, 16, 6, 1, 2, 72, 170, 128, 32, 7, 1, 2, 254, 992, 1366, 512, 64, 8, 1, 2, 926, 6008, 16512, 10922, 2048, 128, 9, 1, 2, 3434, 37130, 215766, 261632, 87382, 8192, 256, 10, 1, 2, 12872, 232562, 2973350, 6643782, 4196352, 699050, 32768, 512, 11
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2019

Keywords

Examples

			Square array begins:
   1,  1,    1,     1,       1,         1, ...
   2,  2,    2,     2,       2,         2, ...
   3,  4,    8,    22,      72,       254, ...
   4,  8,   32,   170,     992,      6008, ...
   5, 16,  128,  1366,   16512,    215766, ...
   6, 32,  512, 10922,  261632,   6643782, ...
   7, 64, 2048, 87382, 4196352, 215492564, ...
		

Crossrefs

Main diagonal gives A167009.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[k*n, k*j], {j, 0, n}] ; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)

A378031 Cogrowth sequence for the 18-element group C6 X C3 = .

Original entry on oeis.org

1, 1, 2, 85, 926, 5461, 37130, 349525, 2973350, 22369621, 174174002, 1431655765, 11582386286, 91625968981, 729520967450, 5864062014805, 47006639297270, 375299968947541, 2999857885752002, 24019198012642645, 192222214478506046, 1537228672809129301
Offset: 0

Views

Author

Sean A. Irvine, Nov 14 2024

Keywords

Comments

Sequence gives terms for n = 0 (mod 3), all other terms are 0.

Crossrefs

Cf. A095364 (D9), A377627 (C6 X C2), A007613 (C3 X C3), A378109 (S3 X C3), A378110 (S3:C3).

Formula

G.f.: (36*x^4+99*x^3-14*x^2+6*x-1) / ((8*x-1) * (x+1) * (27*x^2+1)).

A191370 a(n) = 2*(1+(-1)^n)/3 + 2*A010892(n-1).

Original entry on oeis.org

1, 2, 4, 2, 4, 8, 22, 44, 88, 170, 340, 680, 1366, 2732, 5464, 10922, 21844, 43688, 87382, 174764, 349528, 699050, 1398100, 2796200, 5592406, 11184812, 22369624, 44739242
Offset: 0

Views

Author

Paul Curtz, Jun 01 2011

Keywords

Comments

a(n) and successive differences define an infinite array:
1, 2, 4, 2, 4, 8, ...
1, 2, -2, 2, 4, 14, ...
1, -4, 4, 2, 10, 8, ...
-5, 8, -2, 8, -2, 14, ...
13, -10, 10, -10, 16, 2, ...
-23, 20, -20, 26, -14, 32, ...
...
Its main diagonal consists of the powers 2^n. The first upper diagonal is a signed sequence of 2's. The second upper diagonal contains essentially A135440.

Crossrefs

Programs

  • Maple
    A010892 := proc(n) op( 1+(n mod 6),[1,1,0,-1,-1,0]) ; end proc:
    A191370 := proc(n) 2^n/3+2*(-1)^n/3+2*A010892(n-1) ; end proc:
    seq(A191370(n),n=0..30) ; # R. J. Mathar, Jun 06 2011
  • Mathematica
    LinearRecurrence[{2,0,-1,2},{1,2,4,2},30] (* Harvey P. Dale, Sep 06 2022 *)

Formula

a(n+3) = 3*2^n - a(n), n >= 0.
a(n+1) - 2*a(n) = -6*A131531(n+1).
a(3*n) = A007613(n), a(1+3*n) = 2*A007613(n), a(2+3*n) = 4*A007613(n).
a(n+6) = a(n) + 21*2^n.
a(n) = ((2^n + 2*(-1)^n)*2^n - 2*i*sqrt(3)*((1+i*sqrt(3))^n - (1-i*sqrt(3))^n))/(3*2^n), where i=sqrt(-1); a(n+1) = 2*(A001045(n) + A010892(n)). - Bruno Berselli, Jun 06 2011
G.f.: ( -1+5*x^3 ) / ( (2*x-1)*(1+x)*(x^2-x+1) ). - R. J. Mathar, Jun 06 2011
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4). - Paul Curtz, Jun 07 2011
a(n) = A113405(n+3) - 5*A113405(n). - R. J. Mathar, Jun 24 2011

A191566 a(n) = 7*a(n-1) + (-1)^n*6*2^(n-1).

Original entry on oeis.org

1, 1, 19, 109, 811, 5581, 39259, 274429, 1921771, 13450861, 94159099, 659107549, 4613765131, 32296331341, 226074368539, 1582520481469, 11077643566891, 77543504575021, 542804532811579, 3799631728108189
Offset: 0

Views

Author

Paul Curtz, Jun 06 2011

Keywords

Comments

A007283(n) = 3*2^n. A091629(n+1) = 6*2^n.
a(n) + a(n+2) = 10 * (b(n) = 2, 11, 83, 569, 4007, ...).
b(n+1) = 7*b(n) - (-1)^n*3*2^n.
Inverse binomial transform of A007613(n).

Programs

Formula

a(n+1) - a(n) = 18 * (0 followed by A053573(n)).
a(n) = (7^n + 2*(-2)^n)/3. - Charles R Greathouse IV, Jun 06 2011
G.f.: (1-4*x)/(1 - 5*x - 14*x^2). - Bruno Berselli, Jun 07 2011
a(n) = 5*a(n-1) + 14*a(n-2).
Previous Showing 11-20 of 20 results.