cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 63 results. Next

A084980 Triangle of (multi)factorials: n-th row is (n+1)!!... {n "!"s}, (n+1)!... {n-1 "!"s}, ..., (n+1)!.

Original entry on oeis.org

2, 3, 6, 4, 8, 24, 5, 10, 15, 120, 6, 12, 18, 48, 720, 7, 14, 21, 28, 105, 5040, 8, 16, 24, 32, 80, 384, 40320, 9, 18, 27, 36, 45, 162, 945, 362880, 10, 20, 30, 40, 50, 120, 280, 3840, 3628800, 11, 22, 33, 44, 55, 66, 231, 880, 10395, 39916800, 12, 24, 36, 48, 60, 72, 168
Offset: 1

Views

Author

Rick L. Shepherd, Jul 16 2003

Keywords

Examples

			Triangle begins
Row 1: 2! = 2
Row 2: 3!! = 3*1 = 3, 3! = 3*2*1 = 6
Row 3: 4!!! = 4*1 = 4, 4!! = 4*2 = 8, 4! = 4*3*2*1 = 24,
Row 4: 5!!!! = 5*1 = 5, 5!!! = 5*2 = 10, 5!! = 5*3 = 15, 5! = 5*4*3*2*1 = 120,
...
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662 (n!!!!).

Programs

  • Mathematica
    Flatten[Table[Times @@ Range[n, 1, -i], {n, 12}, {i, n - 1, 1, -1}]] (* Ivan Neretin, May 09 2015 *)

A085147 Numbers k such that k!!!! - 1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 12, 16, 22, 24, 54, 56, 98, 152, 156, 176, 256, 454, 460, 720, 750, 770, 800, 1442, 2846, 5920, 7066, 12778, 19978, 22726, 25938, 27780, 36072, 39746, 48244
Offset: 1

Views

Author

Hugo Pfoertner, Jun 25 2003

Keywords

Comments

The search for multifactorial primes started by Ray Ballinger is now continued by a team of volunteers on the website of Ken Davis (see link).

Crossrefs

Cf. A007662 (quadruple factorials), A085146.

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 1000], PrimeQ[MultiFactorial[#, 4] - 1] & ] (* Robert Price, Apr 19 2019 *)
    Select[Range[48300],PrimeQ[Times@@Range[#,1,-4]-1]&] (* Harvey P. Dale, Aug 11 2020 *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008

A114790 Cumulative product of quintuple factorial A085157.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 10080, 241920, 8709120, 435456000, 28740096000, 4828336128000, 1506440871936000, 759246199455744000, 569434649591808000000, 601322989968949248000000
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Examples

			a(10) = 1!!!!! * 2!!!!! * 3!!!!! * 4!!!!! * 5!!!!! * 6!!!!! * 7!!!!! * 8!!!!! * 9!!!!! * 10!!!!! = 1 * 2 * 3 * 4 * 5 * 6 * 14 * 24 * 36 * 50 = 435456000 = 2^11 * 3^5 * 5^3 * 7.
		

Crossrefs

Programs

  • GAP
    b:= function(n)
        if n<1 then return 1;
        else return n*b(n-5);
        fi;
      end;
    List([0..20], n-> Product([0..n], j-> b(j)) ); # G. C. Greubel, Aug 21 2019
  • Magma
    b:= func< n | n eq 0 select 1 else (n lt 6) select n else n*Self(n-5) >;
    [(&*[b(j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    b:= n-> `if`(n < 1, 1, n*b(n-5)); a:= n-> product(b(j), j = 0..n); seq(a(n), n = 0..20); # G. C. Greubel, Aug 21 2019
  • Mathematica
    b[n_]:= If[n<1, 1, n*b[n-5]]; a[n_]:= Product[b[j], {j,0,n}]; Table[a[n], {n,0,20}] (* G. C. Greubel, Aug 21 2019 *)
  • PARI
    b(n)=if(n<1, 1, n*b(n-5));
    vector(20, n, n--; prod(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 21 2019
    
  • Sage
    @CachedFunction
    def b(n):
        if (n<1): return 1
        else: return n*b(n-5)
    [product(b(j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Product_{j=0..n} A085157(j).
a(n) = n!!!!! * a(n-1) where a(0) = 1, a(1) = 1 and n >= 2.
a(n) = n*(n-5)!!!!! * a(n-1) where a(0) = 1, a(1) = 1, a(2) = 2.

A173574 4-Factorions: equal to the sum of the quadruple factorials of their digits in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 49
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2010

Keywords

Examples

			49 -> 4!!!! + 9!!!! = 4 + 9*5 = 4 +45 = 49.
		

Crossrefs

Programs

  • Maple
    P:=proc(n,m) local a,b,i,j,k,x,w; for i from 1 by 1 to n do a:=0; b:=0; w:=0; k:=i; while k>0 do w:=k-(trunc(k/10)*10); j:=w; x:=w-m; if w=0 then b:=1; else while x>0 do j:=j*x; x:=x-m; od; b:=j; fi; a:=a+b; k:=trunc(k/10); od; if a=i then lprint(i,a); fi; od; end: P(1000,4);
  • Mathematica
    qfd[n_]:=Times@@Range[n,1,-4]; Select[Range[50],Total[qfd/@ IntegerDigits[ #]] == #&] (* Harvey P. Dale, Dec 15 2018 *)

A114423 Multifactorial array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 24, 3, 2, 1, 1, 120, 8, 3, 2, 1, 1, 720, 15, 4, 3, 2, 1, 1, 5040, 48, 10, 4, 3, 2, 1, 1, 40320, 105, 18, 5, 4, 3, 2, 1, 1, 362880, 384, 28, 12, 5, 4, 3, 2, 1, 1, 3628800, 945, 80, 21, 6, 5, 4, 3, 2, 1, 1, 39916800, 3840, 162, 32, 14, 6, 5, 4, 3, 2, 1, 1
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

The columns are n!, n!!, n!!!, ... n!k for n >= 0, k >= 1.

Examples

			Table M begins:
  n / M(n,k)
  0 |   1   1   1   1   1
  1 |   1   1   1   1   1
  2 |   2   2   2   2   2
  3 |   6   3   3   3   3
  4 |  24   8   4   4   4
  5 | 120  15  10   5   5
  6 | 720  48  18  12   6
		

Crossrefs

Cf. A000142 (n!), A006882 (n!!), A007661 (n!!!), A007662(n!4), A085157 (n!5), A085158 (n!6), A114799 (n!7), A114800 (n!8), A114806 (n!9), A288327 (n!10).
Cf. A129116 (transposed).

Programs

  • Mathematica
    NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]},
         While[k > m, k -= m; p *= k]; p];
    Table[NFactorialM[n - m + 1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2021, after Robert G. Wilson v in A007662 *)

Formula

M(n,k) = n!k.
M(n,k) = A129116(k,n). - Georg Fischer, Nov 02 2021

Extensions

Edited by Alois P. Heinz, Apr 24 2025

A114796 Cumulative product of sextuple factorial A085158.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 80640, 2177280, 87091200, 4790016000, 344881152000, 31384184832000, 7030057402368000, 2847173247959040000, 1822190878693785600000, 1703748471578689536000000
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Examples

			a(10) = 1!6 * 2!6 * 3!6 * 4!6 * 5!6 * 6!6 * 7!6 * 8!6 * 9!6 * 10!6
= 1 * 2 * 3 * 4 * 5 * 6 * 7 * 16 * 27 * 40 = 87091200 = 2^11 * 3^5 * 5^2 * 7.
Note that a(10) + 1 = 87091201 is prime, as is a(9) + 1 = 2177281.
		

Crossrefs

Programs

  • GAP
    b:= function(n)
        if n<1 then return 1;
        else return n*b(n-6);
        fi;
      end;
    List([0..20], n-> Product([0..n], j-> b(j)) ); # G. C. Greubel, Aug 22 2019
  • Magma
    b:=func< n | n le 6 select n else n*Self(n-6) >;
    [1] cat [(&*[b(j): j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    b:= n-> `if`(n<1, 1, n*b(n-5)); a:= n-> product(b(j), j = 0..n); seq(a(n), n = 0..20); # G. C. Greubel, Aug 22 2019
  • Mathematica
    b[n_]:= b[n]= If[n<1, 1, n*b[n-6]]; a[n_]:= Product[b[j], {j,0,n}];
    Table[a[n], {n, 0, 20}] (* G. C. Greubel, Aug 22 2019 *)
  • PARI
    b(n)=if(n<1, 1, n*b(n-6));
    vector(20, n, n--; prod(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 22 2019
    
  • Sage
    def b(n):
        if (n<1): return 1
        else: return n*b(n-6)
    [product(b(j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n) = Product_{j=0..n} j!!!!!!.
a(n) = Product_{j=0..n} j!6.
a(n) = Product_{j=0..n} A085158(j).
a(n) = n!!!!!! * a(n-1) where a(0) = 1, a(1) = 1 and n >= 2.
a(n) = n*(n-6)!!!!!! * a(n-1) where a(0) = 1, a(1) = 1, a(2) = 2.

A114805 Cumulative sum of quintuple factorial numbers n!!!!! (A085157).

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 36, 60, 96, 146, 212, 380, 692, 1196, 1946, 3002, 5858, 11474, 21050, 36050, 58226, 121058, 250226, 480050, 855050, 1431626, 3128090, 6744794, 13409690, 24659690, 42533546, 96820394, 216171626, 442778090, 836528090
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Comments

a(1) = 2 is prime; a(3) = 7 is prime; a(4) = 11 is prime; and there are no more primes in the sequence. Semiprime values are: a(2) = 4 = 2^2, a(6) = 22, a(10) = 146 = 2 * 73, a(18) = 11474 = 2 * 5737, a(23) = 250226 = 2 * 125113.

Examples

			a(10) = 0!5 + 1!5 + 2!5 + 3!5 + 4!5 + 5!5 + 6!5 + 7!5 + 8!5 + 9!5 + 10!5 =
1 + 1 + 2 + 3 + 4 + 5 + 6 + 14 + 24 + 36 + 50 = 146 = 2 * 73.
		

Crossrefs

Programs

  • GAP
    b:= function(n)
        if n<1 then return 1;
        else return n*b(n-5);
        fi;
      end;
    List([0..40], n-> Sum([0..n], j-> b(j)) ); # G. C. Greubel, Aug 21 2019
  • Magma
    b:= func< n | n eq 0 select 1 else (n lt 6) select n else n*Self(n-5) >;
    [(&+[b(j): j in [0..n]]): n in [0..40]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    b:= n-> `if`(n < 1, 1, n*b(n-5)); a:= n-> sum(b(j), j = 0..n); seq(a(n), n = 0..40); # G. C. Greubel, Aug 21 2019
  • Mathematica
    f5[0]=1; f5[n_]:= f5[n]= If[n<=6, n, n f5[n-5]]; Accumulate[f5/@Range[0, 35]] (* Giovanni Resta, Jun 15 2016 *)
  • PARI
    b(n)=if(n<1, 1, n*b(n-5));
    vector(40, n, n--; sum(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 21 2019
    
  • Sage
    @CachedFunction
    def b(n):
        if (n<1): return 1
        else: return n*b(n-5)
    [sum(b(j) for j in (0..n)) for n in (0..40)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{j=0..n} j!5.
a(n) = Sum_{j=0..n} j!!!!!.
a(n) = Sum_{j=0..n} A085157(j).

A117607 Integer complexity of n represented with {1,+,!} and parentheses, where ! can be concatenated for multifactorials.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 4, 4, 5, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 6, 4, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 3, 4, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Apr 06 2006

Keywords

Comments

Using the set of symbols {1, +, !} and parentheses, how many 1's does it take to represent n? "!!" is double factorial, "!!!" is triple factorial and so forth.
lim inf = 3, lim sup = infinity. What is the average behavior of this sequence? - Charles R Greathouse IV, Jun 15 2012

Examples

			a(1) = 1 because there is one 1 in "1".
a(2) = 2 because "1 + 1".
a(6) = 3 because "(1+1+1)!".
a(7) = 4 because "(1+1+1)!+1".
a(8) = 4 because "(1+1+1+1)!!" using double factorial.
a(12) = 3 because "((1+1+1)!)!!!!" using quadruple factorial.
a(15) = 5 because "(1+1+1+1+1)!!" using double factorial.
a(16) = 4 because "((1+1+1+1)!!)!!!!!!" using double factorial and sextuple factorial.
a(24) = 3 because "(((1+1+1)!)!!!!)!!!!!!!!!!" using quadruple factorial and decuple factorial.
a(36) = 3 because "(((1+1+1)!)!!!!)!!!!!!!!!" using quadruple factorial and nonuple factorial.
		

Crossrefs

n! = A000142. n!! = A006882. n!!! = A007661. n!!!! = A007662. n!!!!! = A085157. n!!!!!! = A085158. n!!!!!!! = A114799. n!!!!!!!! = A114800. n!!!!!!!!! = A114806.

A153189 Triangle T(n,k) = Product_{j=0..k} n*j+1.

Original entry on oeis.org

1, 1, 2, 1, 3, 15, 1, 4, 28, 280, 1, 5, 45, 585, 9945, 1, 6, 66, 1056, 22176, 576576, 1, 7, 91, 1729, 43225, 1339975, 49579075, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625
Offset: 0

Views

Author

Roger L. Bagula, Dec 20 2008

Keywords

Comments

Row sums are: {1, 3, 19, 313, 10581, 599881, 50964103, 6047094369, 954249517513, 193146844030201, 48762935887310811,...}. [Corrected by M. F. Hasler, Oct 28 2014]
This is the lower left triangle of the array A142589. - M. F. Hasler, Oct 28 2014
Row n is a subset of the n-fold factorial sequence for k=0..n. For example, T(8,0..8) is A045755(1..9). These sequences are listed for n=0..10 in A256268. - Georg Fischer, Feb 15 2020

Examples

			Triangle begins as:
  1;
  1, 2;
  1, 3,  15;
  1, 4,  28,  280;
  1, 5,  45,  585,   9945;
  1, 6,  66, 1056,  22176,  576576;
  1, 7,  91, 1729,  43225, 1339975,  49579075;
  1, 8, 120, 2640,  76560, 2756160, 118514880,  5925744000;
  1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625;
		

Crossrefs

Cf. A000142 (row 2), A001147 (3), A007559 (4), A007696 (5), A008548 (6), A008542 (7), A045754 (8), A045755 (9), A045756 (10), A144773 (11), A256268 (combined table).

Programs

  • Magma
    [(&*[n*j+1: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 15 2020
    
  • Maple
    seq(seq(mul(n*j+1, j=0..k), k=0..n), n=0..10); # G. C. Greubel, Feb 15 2020
  • Mathematica
    T[n_, k_]= If[n==0 && k==0, 1, Product[n*j+1, {j,0,k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2020 *)
    T[n_, k_]:= T[n, k]= If[k<2, 1+k*n, ((1+n*k)*T[n, k-1] + (1+n*k)*(1+n*(k-1))* T[n, k-2])/2]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k)=prod(j=0,k,n*j+1) \\ M. F. Hasler, Oct 28 2014
    
  • Sage
    [[ product(n*j+1 for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 15 2020

Formula

T(n, k) = n^(k+1)*Pochhammer(1/n, k+1).
From Vaclav Kotesovec, Oct 10 2016: (Start)
For fixed n > 0:
T(n, k) ~ sqrt(2*Pi) * n^k * k^(k + 1/2 + 1/n) / (Gamma(1 + 1/n) * exp(k)).
T(n, k) ~ k! * n^k * k^(1/n) / Gamma(1 + 1/n).
(End)
T(n, k) = Sum_{j=0..k+1} (-1)^(k-j+1)*Stirling1(k+1,j)*n^(k-j+1). - G. C. Greubel, Feb 17 2020
T(n, k) = ((1+n*k)*T(n, k-1) + (1+n*k)*(1+n*(k-1))*T(n, k-2))/2. - Georg Fischer, Feb 17 2020

Extensions

Edited and row 0 added by M. F. Hasler, Oct 28 2014

A337354 a(n) is the numerator of Product_{i=0..n-1} (n-i)^((-1)^ceiling(i/2)).

Original entry on oeis.org

1, 2, 3, 2, 5, 9, 7, 40, 45, 7, 308, 48, 975, 539, 88, 1664, 1105, 24255, 13376, 56576, 41769, 48279, 55936, 226304, 348075, 370139, 671232, 870400, 2082925, 4283037, 13872128, 80773120, 343682625, 4023459, 1553678336, 1900544, 14411758075, 59457783, 1471905792, 1406402560
Offset: 1

Views

Author

Devansh Singh, Aug 24 2020

Keywords

Comments

a(n) is the numerator of (n/(n-1)) * ((n-3)/(n-2)) * ((n-4)/(n-5)) ...

Examples

			a(n)/A337355(n) equals 1, 2, 3/2, 2/3, 5/6, 9/5, 7/5, 40/63, 45/56, 7/4 ...
a(4) = numerator of (4*1)/(3*2) = numerator of 2/3 = 2.
a(5) = numerator of (5*2)/(4*3) = numerator of 5/6 = 5.
                      12  *   9*8  *  5*4  *  1
a(12) = numerator of --------------------------- = 48.
                        11*10  *  7*6  *  3*2
		

Crossrefs

Cf. A337355 (denominators).

Programs

  • PARI
    a(n) = {numerator(prod(i=0, n-1, (n-i)^(-1)^((i+1)\2)))} \\ Andrew Howroyd, Aug 24 2020

Formula

a(n) = numerator of (n*A337355(n-2))/(a(n-2)*(n-1)) for n>=3.
Conjecture: a(4*n)/A337355(4*n) ~ 0.5990701173677... (=A076390). - Andrew Howroyd, Aug 25 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 25 2020
Previous Showing 51-60 of 63 results. Next