cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A198479 a(n) = 10^n * n^10.

Original entry on oeis.org

0, 10, 102400, 59049000, 10485760000, 976562500000, 60466176000000, 2824752490000000, 107374182400000000, 3486784401000000000, 100000000000000000000, 2593742460100000000000, 61917364224000000000000
Offset: 0

Views

Author

Vincenzo Librandi, Oct 27 2011

Keywords

Crossrefs

Programs

  • Magma
    [10^n*n^10: n in [0..20]]
    
  • Mathematica
    Table[10^n*n^10, {n,0,20}] (* G. C. Greubel, May 17 2022 *)
  • SageMath
    [10^n*n^10 for n in (0..20)] # G. C. Greubel, May 17 2022

Formula

G.f.: 10*x*(1 + 10*x)*(1 + 10120*x + 4682800*x^2 + 408364000*x^3 + 9019900000*x^4 + 40836400000*x^5 + 46828000000*x^6 + 10120000000*x^7 + 100000000*x^8)/ (1-10*x)^11. - Colin Barker, May 01 2013
a(n) = A011557(n)*A008454(n). - Michel Marcus, May 18 2022

A248917 a(n) = 2^n * n^2 + 1.

Original entry on oeis.org

1, 3, 17, 73, 257, 801, 2305, 6273, 16385, 41473, 102401, 247809, 589825, 1384449, 3211265, 7372801, 16777217, 37879809, 84934657, 189267969, 419430401, 924844033, 2030043137, 4437573633, 9663676417, 20971520001, 45365592065, 97844723713, 210453397505, 451508436993
Offset: 0

Views

Author

Paul Curtz, Oct 22 2014

Keywords

Comments

Binomial transform of A118239 (Engel expansion of cosh(1)).
Table of successive differences of a(n):
1, 3, 17, 73, 257, 801, 2305,...
2, 14, 56, 184, 544, 1504,...
12, 42, 128, 360, 960,...
30, 86, 232, 600,...
56, 146, 368,...
90, 222,...
132,...
etc.
Via b(n) = 0, 0, 0 followed by A055580(n), i.e., 0, 0, 0, 1, 7, 31, 111, ... (the main sequence for the recurrence), a link can be found between a(n) and A002064(n): c(n) = b(n+1) - 2*b(n) = 0, 0, 1, 5, 17, 49, 129, ... (the main sequence for the signature (5, -8, 4)).

Examples

			a(3) = 9 * 8 + 1 = 73.
a(4) = 16 * 16 + 1 = 257.
a(5) = 25 * 32 + 1 = 801.
		

Crossrefs

Cf. A000225, A002064 (Cullen numbers), A006784, A007758, A055580, A118239, A168298.

Programs

  • Magma
    [2^n*n^2+1: n in [0..30]]; // Vincenzo Librandi, Oct 29 2016
  • Mathematica
    Table[n^2 * 2^n + 1, {n, 0, 31}] (* Alonso del Arte, Oct 22 2014 *)
    LinearRecurrence[{7,-18,20,-8}, {1,3,17,73}, 25] (* G. C. Greubel, Oct 28 2016 *)
  • PARI
    Vec(-(12*x^3-14*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Oct 22 2014
    
  • PARI
    a(n)=n^2<Charles R Greathouse IV, Oct 22 2014
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + 2^(n+1) + 1.
a(n) = A007758(n) + 1.
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4). - Jean-François Alcover, Oct 22 2014
G.f.: -(12*x^3-14*x^2+4*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Oct 22 2014
E.g.f.: exp(x) + 2*x*(1 + 2*x)*exp(2*x). - G. C. Greubel, Oct 28 2016

A062189 a(n) = 2 * 3^(n-2)*n*(1+2*n).

Original entry on oeis.org

0, 2, 20, 126, 648, 2970, 12636, 51030, 198288, 747954, 2755620, 9959598, 35429400, 124357194, 431530092, 1482720390, 5050815264, 17075199330, 57338232372, 191385721566, 635369601960, 2099044209402, 6903833113980
Offset: 0

Views

Author

Henry Bottomley, Jun 13 2001

Keywords

Comments

Define a triangle with left (first) column T(n,0)=n^2 for n=0,1,2,3.. and the remaining terms T(r,c) = T(r-1,c-1) + 2*T(r,c-1). Then T(n,n) = a(n) on the diagonal. T(n,1) = A056105(n). - J. M. Bergot, Jan 26 2013

Programs

  • GAP
    List([0..30], n-> 2*3^(n-2)*n*(1+2*n)); # G. C. Greubel, Jun 06 2019
  • Magma
    [2*3^(n-2)*n*(1+2*n): n in [0..30]]; // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    Table[2*3^(n-2)*n*(1+2*n), {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
    LinearRecurrence[{9,-27,27},{0,2,20},30] (* Harvey P. Dale, Jun 08 2022 *)
  • PARI
    { for (n=0, 200, write("b062189.txt", n, " ", n*(4*n + 2)*3^(n - 2)) ) } \\ Harry J. Smith, Aug 02 2009
    
  • Sage
    [2*3^(n-2)*n*(1+2*n) for n in (0..30)] # G. C. Greubel, Jun 06 2019
    

Formula

a(n) = A002943(n)*A000244(n-2). Binomial transform of A007758.
G.f.: 2*x*(1+x)/(1-3*x)^3. - Ralf Stephan, Mar 13 2003
a(n) = 2*A077616(n). - R. J. Mathar, Jan 29 2013
E.g.f.: 2*x*(1+2*x)*exp(3*x). - G. C. Greubel, Jun 06 2019

A116138 a(n) = 3^n * n*(n + 1).

Original entry on oeis.org

0, 6, 54, 324, 1620, 7290, 30618, 122472, 472392, 1771470, 6495390, 23383404, 82904796, 290166786, 1004423490, 3443737680, 11708708112, 39516889878, 132497807238, 441659357460, 1464449448420, 4832683179786, 15878816162154
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 08 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 6*x/(1-3*x)^3.
a(n) = 6 * A027472(n+2). (End)
a(n) = 9*a(n-1) -27*a(n-2) +27*a(n-3). - Vincenzo Librandi, Feb 28 2013
E.g.f.: 3*x*(2 + 3*x)*exp(3*x). - G. C. Greubel, May 10 2019
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = 1 - 2*log(3/2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(4/3) - 1. (End)

A168298 a(n) = 1 - n^2*2^n.

Original entry on oeis.org

1, -1, -15, -71, -255, -799, -2303, -6271, -16383, -41471, -102399, -247807, -589823, -1384447, -3211263, -7372799, -16777215, -37879807, -84934655, -189267967, -419430399, -924844031, -2030043135, -4437573631, -9663676415, -20971519999, -45365592063
Offset: 0

Views

Author

Keywords

Comments

Numerator of 2^(-n) - n^2.

Crossrefs

Programs

  • Magma
    [1-n^2*2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2016
  • Mathematica
    f[n_]:=2^n-n^2; Table[Numerator[f[n]],{n,0,-50,-1}]
    LinearRecurrence[{7,-18,20,-8},{1,-1,-15,-71},30] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    Vec(-(4*x^3-10*x^2+8*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Feb 10 2015
    

Formula

a(n)= 7*a(n-1) -18*a(n-2) +20*a(n-3) -8*a(n-4) = 1-A007758(n). - R. J. Mathar, Nov 24 2009
G.f.: -(4*x^3-10*x^2+8*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Feb 10 2015
E.g.f.: exp(x) - 2*x*(1 + 2*x)*exp(2*x). - G. C. Greubel, Jul 17 2016

Extensions

Offset corrected, keyword:sign added, and definition simplified by R. J. Mathar, Nov 23 2009

A198402 a(n) = 5^n * n^5.

Original entry on oeis.org

0, 5, 800, 30375, 640000, 9765625, 121500000, 1313046875, 12800000000, 115330078125, 976562500000, 7863818359375, 60750000000000, 453238525390625, 3282617187500000, 23174285888671875, 160000000000000000, 1083264923095703125
Offset: 0

Views

Author

Vincenzo Librandi, Oct 27 2011

Keywords

Crossrefs

Sequences of the form n^m*m^n: A001477 (m=1), A007758 (m=2), A062074 (m=3), A062075 (m=4), this sequence (m=5), A198403 (m=6), A098803 (m=7), A198404 (m=8), A198478 (m=9), A198479 (m=10), A098880 (m=11).

Programs

  • Magma
    [5^n*n^5: n in [0..20]]
    
  • Mathematica
    With[{m = 5}, Table[n^m*m^n, {n, 0, 30}]] (* G. C. Greubel, May 18 2022 *)
  • PARI
    a(n)=5^n*n^5 \\ Charles R Greathouse IV, Jul 06 2017
    
  • SageMath
    m=5; [n^m*m^n for n in (0..30)] # G. C. Greubel, May 18 2022

Formula

G.f.: 5*x*(1 + 130*x + 1650*x^2 + 3250*x^3 + 625*x^4)/(1-5*x)^6. - Colin Barker, Apr 30 2013
E.g.f.: 5*x*(1 + 75*x + 625*x^2 + 1250*x^3 + 625*x^4)*exp(5*x). - G. C. Greubel, May 18 2022
a(n) = A000351(n)*A000584(n). - Michel Marcus, May 19 2022

A198403 a(n) = 6^n * n^6.

Original entry on oeis.org

0, 6, 2304, 157464, 5308416, 121500000, 2176782336, 32934190464, 440301256704, 5355700839936, 60466176000000, 642717115324416, 6499837226778624, 63041475422674944, 590045794670739456, 5355700839936000000
Offset: 0

Views

Author

Vincenzo Librandi, Oct 27 2011

Keywords

Crossrefs

Sequences of the form n^m*m^n: A001477 (m=1), A007758 (m=2), A062074 (m=3), A062075 (m=4), A198402 (m=5), this sequence (m=6), A098803 (m=7), A198404 (m=8), A198478 (m=9), A198479 (m=10), A098880 (m=11).

Programs

Formula

G.f.: 6*x*(1 + 336*x + 8856*x^2 + 12096*x^3 + 1296*x^4)/(1-6*x)^7. - Colin Barker, Apr 30 2013
E.g.f.: 6*x*(1 + 186*x + 3240*x^2 + 14040*x^3 + 19440*x^4 + 7776*x^5)*exp(6*x). - G. C. Greubel, May 18 2022
a(n) = A000400(n)*A001014(n). - Michel Marcus, May 19 2022
a(n) = 42*a(n-1) - 756*a(n-2) + 7560*a(n-3) - 45360*a(n-4) + 163296*a(n-5) - 326592*a(n-6) + 279936*a(n-7). - Wesley Ivan Hurt, Sep 04 2022

A240983 Integers of the form 2^p*p^2 where p is the lesser of a pair of twin primes.

Original entry on oeis.org

72, 800, 247808, 37879808, 451508436992, 3696558092582912, 2006659878768217161728, 11902724720072940761120768, 25862607545856336249335738796081152, 1857706460417663797470176639788777472, 3270020989306416138620967939526071071138643968
Offset: 1

Views

Author

Zak Seidov, Aug 21 2014

Keywords

Comments

Subsequence of A071837.

Examples

			a(1)=2^3*3^2=72=A071837(3), a(4)=2^17*17^2=37879808=A071837(10).
		

Crossrefs

Programs

  • PARI
    forprime(p=3,100,isprime(2+p) && print1(p","))
    
  • Python
    from sympy import prime, isprime
    A240983 = [2**p*p*p for p in (prime(n) for n in range(1,2*10**3)) if isprime(p+2)] # Chai Wah Wu, Aug 27 2014

Formula

a(n) = 2^p*p^2, with p=A001359(n).
a(n) = A007758(A001359(n)). - Michel Marcus, Aug 21 2014

Extensions

More terms from Chai Wah Wu, Aug 27 2014

A378778 a(n) = n^2 * 2^n * binomial(3*n, n).

Original entry on oeis.org

0, 6, 240, 6048, 126720, 2402400, 42771456, 729308160, 12049956864, 194372006400, 3076609536000, 47959947509760, 738269547724800, 11245075661094912, 169748150676357120, 2542638555345715200, 37830087271621066752, 559525260959878348800, 8232406073859904634880, 120560661522092497305600
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004. See p. 26.

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * 2^n * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n^2 * 2^n * binomial(3*n, n);

Formula

a(n) = A007758(n) * A005809(n).
a(n) = n^2 * A228484(n).
a(n) = n * A378780(n).
a(n) == 0 (mod 6).
Sum_{n>=1} 1/a(n) = Pi^2/24 - log(2)^2/2 (Borwein et al., 2004; Borwein and Girgensohn, 2005; Batir, 2005).

A112327 Triangle read by rows: T(n,k)=k^3*2^k*binomial(2n-k,n-k)/(2n-k) (1<=k<=n).

Original entry on oeis.org

2, 2, 16, 4, 32, 72, 10, 80, 216, 256, 28, 224, 648, 1024, 800, 84, 672, 2016, 3584, 4000, 2304, 264, 2112, 6480, 12288, 16000, 13824, 6272, 858, 6864, 21384, 42240, 60000, 62208, 43904, 16384, 2860, 22880, 72072, 146432, 220000, 253440, 219520, 131072
Offset: 1

Views

Author

Emeric Deutsch, Sep 04 2005

Keywords

Comments

T(n,1) = 2*Catalan(n-1) = 2*A000108(n-1); T(n,n) = 2^n*n^2 = A007758(n).
Row sums yield A112328.

Examples

			Triangle starts:
2;
2,16;
4,32,72;
10,80,216,256;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<2*n then k^3*2^k*binomial(2*n-k,n-k)/(2*n-k) else 0 fi end: for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
Previous Showing 11-20 of 49 results. Next