cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 65 results. Next

A304634 Numbers n with prime omicron 2, meaning A304465(n) = 2.

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Comments

If n > 1 is not a prime number, we have A056239(n) >= Omega(n) >= omega(n) >= A071625(n) >= ... >= omicron(n) > 1 where Omega = A001222, omega = A001221, and omicron = A304465.

Examples

			This is a list of normalized factorizations (see A112798) of selected entries:
    4: {1,1}
    6: {1,2}
   12: {1,1,2}
   24: {1,1,1,2}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  120: {1,1,1,2,3}
  144: {1,1,1,1,2,2}
  180: {1,1,2,2,3}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  240: {1,1,1,1,2,3}
  288: {1,1,1,1,1,2,2}
  384: {1,1,1,1,1,1,1,2}
  420: {1,1,2,3,4}
  432: {1,1,1,1,2,2,2}
  480: {1,1,1,1,1,2,3}
  576: {1,1,1,1,1,1,2,2}
  768: {1,1,1,1,1,1,1,1,2}
  840: {1,1,1,2,3,4}
  864: {1,1,1,1,1,2,2,2}
  960: {1,1,1,1,1,1,2,3}
		

Crossrefs

Programs

  • Mathematica
    Join@@Position[Table[Switch[n,1,0,?PrimeQ,1,,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Length[#]>1&]//First],{n,100}],2]

A325240 Numbers whose minimum prime exponent is 2.

Original entry on oeis.org

4, 9, 25, 36, 49, 72, 100, 108, 121, 144, 169, 196, 200, 225, 288, 289, 324, 361, 392, 400, 441, 484, 500, 529, 576, 675, 676, 784, 800, 841, 900, 961, 968, 972, 1089, 1125, 1152, 1156, 1225, 1323, 1352, 1369, 1372, 1444, 1521, 1568, 1600, 1681, 1764, 1800
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

Or barely powerful numbers, a subset of powerful numbers A001694.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose minimum multiplicity is 2 (counted by A244515).
Powerful numbers (A001694) that are not cubefull (A036966). - Amiram Eldar, Jan 30 2023

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
    9: {2,2}
   25: {3,3}
   36: {1,1,2,2}
   49: {4,4}
   72: {1,1,1,2,2}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  121: {5,5}
  144: {1,1,1,1,2,2}
  169: {6,6}
  196: {1,1,4,4}
  200: {1,1,1,3,3}
  225: {2,2,3,3}
  288: {1,1,1,1,1,2,2}
  289: {7,7}
  324: {1,1,2,2,2,2}
  361: {8,8}
  392: {1,1,1,4,4}
  400: {1,1,1,1,3,3}
		

Crossrefs

Positions of 2's in A051904.
Maximum instead of minimum gives A067259.

Programs

  • Mathematica
    Select[Range[1000],Min@@FactorInteger[#][[All,2]]==2&]
  • PARI
    is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) == 2; } \\ Amiram Eldar, Jan 30 2023
    
  • Python
    from math import isqrt, gcd
    from sympy import integer_nthroot, factorint, mobius
    def A325240(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c += integer_nthroot(z//y**4,3)[0]
            return c
        return bisection(f,n,n**2) # Chai Wah Wu, Oct 02 2024

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Product_{p prime} (1 + 1/(p^2*(p-1))) = A082695 - A065483 = 0.6038122832... . - Amiram Eldar, Jan 30 2023

A084227 Numbers of the form p*q^k with distinct primes p and q, k>0.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 104, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 129
Offset: 1

Views

Author

Reinhard Zumkeller, May 20 2003

Keywords

Comments

A001221(a(n)) = 2 AND A001222(a(n)) = A051903(a(n)) + 1. [Clarified by N. J. A. Sloane, Aug 22 2021]
See A007774 for the numbers with omega(n) = A001221(n) = 2. - N. J. A. Sloane, Aug 22 2021

Examples

			80 = 5*2^4, therefore 80 is a term.
		

Crossrefs

Programs

  • Mathematica
    doit[{p_,q_}]:=Table[{p q^k,q p^k},{k,10}]; Take[Union[Flatten[ doit/@ Subsets[Prime[Range[20]],{2}]]],70] (* Harvey P. Dale, May 09 2012 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); #f==2 && vecmin(f)==1 \\ Charles R Greathouse IV, Oct 19 2015

Formula

a(n) ~ n log n/log log n. - Charles R Greathouse IV, Oct 19 2015

A136151 Composites n with exactly two distinct prime divisors and of the form n=1+(any prime).

Original entry on oeis.org

6, 12, 14, 18, 20, 24, 38, 44, 48, 54, 62, 68, 72, 74, 80, 98, 104, 108, 152, 158, 164, 192, 194, 200, 212, 224, 242, 272, 278, 284, 314, 332, 338, 368, 384, 398, 422, 432, 458, 464, 488, 500, 524, 542, 548, 578, 608, 614, 632, 648, 662, 674, 692, 734, 752, 758
Offset: 1

Views

Author

Enoch Haga, Dec 16 2007

Keywords

Crossrefs

Programs

  • Maple
    isA136151 := proc(n) if isprime(n-1) then if nops(numtheory[factorset](n)) =2 then true; else false ; fi ; else false ; fi ; end: for i from 1 to 200 do n := ithprime(i)+1 ; if isA136151( n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Feb 01 2008
  • Mathematica
    Select[Range[800],PrimeNu[#]==2&&PrimeQ[#-1]&] (* Harvey P. Dale, Jun 22 2018 *)

Formula

A008864 INTERSECT A007774. - R. J. Mathar, Feb 01 2008

Extensions

Edited by R. J. Mathar, Feb 01 2008

A143202 Numbers having exactly two distinct prime factors p, q with q = p+2.

Original entry on oeis.org

15, 35, 45, 75, 135, 143, 175, 225, 245, 323, 375, 405, 675, 875, 899, 1125, 1215, 1225, 1573, 1715, 1763, 1859, 1875, 2025, 3375, 3599, 3645, 4375, 5183, 5491, 5625, 6075, 6125, 6137, 8575, 9375, 10125, 10403, 10935, 11663, 12005, 16875, 17303, 18225
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Subsequence of A007774.
A037074 is a subsequence.

Examples

			a(1) = 15 = 3 * 5 = A001359(1) * A006512(1).
a(2) = 35 = 5 * 7 = A001359(2) * A006512(2).
a(3) = 45 = 3^2 * 5 = A001359(1)^2 * A006512(1).
a(4) = 75 = 3 * 5^2 = A001359(1) * A006512(1)^2.
a(5) = 135 = 3^3 * 5 = A001359(1)^3 * A006512(1).
a(6) = 143 = 11 * 13 = A001359(3) * A006512(3).
a(7) = 175 = 5^2 * 7 = A001359(2)^2 * A006512(2).
a(8) = 225 = 3^2 * 5^2 = A001359(1)^2 * A006512(1)^2.
a(9) = 245 = 5 * 7^2 = A001359(2) * A006512(2)^2.
a(10) = 323 = 17 * 19 = A001359(4) * A006512(4).
a(11) = 375 = 3 * 5^3 = A001359(1) * A006512(1)^3.
a(12) = 405 = 3^4 * 5 = A001359(1)^4 * A006512(1).
		

Crossrefs

Programs

  • Haskell
    a143202 n = a143202_list !! (n-1)
    a143202_list = filter (\x -> a006530 x - a020639 x == 2) [1,3..]
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    tdpfQ[n_]:=Module[{fi=FactorInteger[n][[;;,1]]},Length[fi]==2&&fi[[2]]-fi[[1]]==2]; Select[Range[20000],tdpfQ] (* Harvey P. Dale, Mar 04 2023 *)

Formula

A143201(a(n)) = 3.
A020639(a(n)) in A001359 and A006530(a(n)) in A006512.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/(A001359(n)^2-1) = 0.1812568234997... . - Amiram Eldar, Oct 26 2024

A143203 Numbers having exactly two distinct prime factors p, q with q = p+4.

Original entry on oeis.org

21, 63, 77, 147, 189, 221, 437, 441, 539, 567, 847, 1029, 1323, 1517, 1701, 2021, 2873, 3087, 3757, 3773, 3969, 4757, 5103, 5929, 6557, 7203, 8303, 9261, 9317, 9797, 10051, 11021, 11907, 12317, 15309, 16637, 21609
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Subsequence of A007774.
A033850 is a subsequence.
Subsequence of A195106. - Reinhard Zumkeller, Sep 13 2011

Examples

			a(1) = 21 = 3 * 7 = A023200(1) * A046132(1).
a(2) = 63 = 3^2 * 7 = A023200(1)^2 * A046132(1).
a(3) = 77 = 7 * 11 = A023200(2) * A046132(2).
a(4) = 147 = 3 * 7^2 = A023200(1) * A046132(1)^2.
a(5) = 189 = 3*3 * 7 = A023200(1)^3 * A046132(1).
a(6) = 221 = 13 * 17 = A023200(3) * A046132(3).
a(7) = 437 = 19 * 23 = A023200(4) * A046132(4).
a(8) = 441 = 3^2 * 7^2 = A023200(1)^2 * A046132(1)^2.
a(9) = 539 = 7^2 * 11 = A023200(2)^2 * A046132(2).
a(10) = 567 = 3^4 * 7 = A023200(1)^4 * A046132(1).
		

Crossrefs

Programs

  • Haskell
    a143203 n = a143203_list !! (n-1)
    a143203_list = filter f [1,3..] where
       f x = length pfs == 2 && last pfs - head pfs == 4 where
           pfs = a027748_row x
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    dpf2Q[n_]:=Module[{fi=FactorInteger[n][[;;,1]]},Length[fi]==2&&fi[[2]]-fi[[1]]==4]; Select[Range[22000],dpf2Q] (* Harvey P. Dale, Mar 18 2023 *)

Formula

A143201(a(n)) = 5.
A020639(a(n)) in A023200 and A006530(a(n)) in A046132.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A023200(n)+1)^2-4) = 0.109882433872... . - Amiram Eldar, Oct 26 2024

A267114 Numbers n for which A001222(n) = A267115(n) + A267116(n).

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 129, 133, 134, 135, 136, 141, 142, 143, 144
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			6 = 2^1 * 3^1 is included as bitwise-or of its exponents is 1 and likewise bitwise-and(1,1) = 1 and 1+1 = A001222(6) = 2, the number of the prime factors of 6 when counted with multiplicity.
12 = 2^2 * 3^1 is included as bitwise-or of its exponents ("10" and "01" in binary) is 3 ("11"), bitwise-and(1,2) = 0 and 3+0 = A001222(12).
60 = 2^2 * 3^1 * 5^1 is NOT included as bitwise-or(2,1,1) = 3, bitwise-and(2,1,1) = 0 and 3+0 < 4 = A001222(60).
		

Crossrefs

Differs from A030231 for the first time at n=118, where A030231(118) = 210 (= 2*3*5*7), which term is missing from this sequence.
a(n+1) differs from A007774 for the first time at n=375, as a(376) = 720 = 2^4 * 3^2 * 5^1.
Cf. A007774 (subsequence).

Programs

  • Mathematica
    {1}~Join~Select[Range@ 144, Function[n, PrimeOmega@ n == BitAnd @@ # + BitOr @@ # &@ Map[Last, FactorInteger@ n]]] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    is(n)=if(n>1, my(f=factor(n)[,2]); fold(bitand, f) + fold(bitor, f) == vecsum(f), 1) \\ Charles R Greathouse IV, Aug 04 2016

Extensions

Erroneous claim corrected by Antti Karttunen, Feb 07 2016

A323916 Numbers k with exactly two distinct prime divisors and such that cototient(k) is a square.

Original entry on oeis.org

6, 21, 24, 28, 54, 68, 69, 96, 112, 124, 133, 141, 189, 216, 237, 272, 284, 301, 384, 388, 448, 481, 486, 496, 501, 508, 589, 621, 657, 669, 781, 796, 864, 964, 1025, 1029, 1077, 1088, 1136, 1141, 1269, 1317, 1348, 1357, 1372, 1417, 1536, 1537, 1552, 1701, 1792, 1796
Offset: 1

Views

Author

Bernard Schott, Feb 09 2019

Keywords

Comments

The integers with only one prime factor and whose cototient is a square are in A246551.
This sequence is the intersection of A007774 and A063752.
There are exactly two different families of integers which realize a partition of this sequence (A323917 and A323918); there is also another family with the even perfect numbers of A000396 which is a subsequence of this sequence.
See the file "Subfamilies of terms" (& II) in A063752 for more details, proofs with data, comments, formulas and examples.

Examples

			1st family: 189 = 3^3 * 7 and cototient(189) = 9^2;
2nd family: 272 = 2^4 * 17 and cototient(272) = 12^2;
3rd family: 8128 = 2^6 * 127 and cototient(8128) = 64^2.
		

Crossrefs

Subsequence of A063752.
Cf. A051953.

Programs

  • Mathematica
    Select[Range[1800], 2 == Length@ FactorInteger@ # == 2 && IntegerQ@ Sqrt[# - EulerPhi@ #] &] (* Giovanni Resta, Feb 27 2019 *)
    Select[Range[2000],PrimeNu[#]==2&&IntegerQ[Sqrt[#-EulerPhi[#]]]&] (* Harvey P. Dale, Jan 06 2022 *)
  • PARI
    isok(n) = (omega(n)==2) && issquare(n - eulerphi(n)); \\ Michel Marcus, Feb 10 2019
    
  • Sage
    [n for n in (1..2500) if len([1 for d in divisors(n) if is_prime(d)])==2 and is_square(n - euler_phi(n))] # G. C. Greubel, Mar 01 2019

Formula

1st family (A323917): if k = p^(2s+1) * q^(2t+1) with s,t >=0, p, q primes and p + q - 1 = M^2, then cototient(k) = (p^r * q^s * M)^2. The primitive terms are p*q with cototient(p*q) = p+q-1 = M^2
2nd family (A323918): if k = p^(2s) * q^(2t+1) with s>=1, t>=0, p, q primes, p < q and such that p*(p+q-1)= M^2, then cototient(k) = (p^(s-1) * q^t * M)^2. The primitive terms are p^2 *q with cototient(p^2 * q) = p * (p+q-1) = M^2
3rd family (A000396): the even perfect Numbers, if 2^p - 1 is a Mersenne prime, then cototient(2^(p-1) * (2^p - 1)) = (2^(p-1))^2.

A064040 Integers whose number of distinct prime divisors is prime.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Lior Manor, Aug 23 2001

Keywords

Comments

For all terms below 210 this sequence and A024619 are identical.

Examples

			210 = 2*3*5*7 has 4 prime factors, hence it is not here, but it is part of A024619.
		

Crossrefs

Programs

  • Maple
    q:= n-> isprime(nops(ifactors(n)[2])):
    select(q, [$1..210])[];  # Alois P. Heinz, Apr 18 2024
  • Mathematica
    Select[Range[200], PrimeQ[PrimeNu[#]] &] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    n=0; for (m=1, 10^9, if (isprime(omega(m)), write("b064040.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Sep 06 2009
    
  • PARI
    is(n)=isprime(omega(n)) \\ Charles R Greathouse IV, Sep 18 2015

Extensions

Edited by Charles R Greathouse IV, Mar 18 2010
Name edited by Michel Marcus, Oct 16 2023

A143205 Numbers having exactly two distinct prime factors p, q with q = p+6.

Original entry on oeis.org

55, 91, 187, 247, 275, 391, 605, 637, 667, 1147, 1183, 1375, 1591, 1927, 2057, 2491, 3025, 3127, 3179, 3211, 4087, 4459, 4693, 4891, 5767, 6647, 6655, 6875, 7387, 8281, 8993, 9991, 10807, 11227, 12091, 15125, 15341, 15379, 17947, 19343, 22627, 23707
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 30 2008

Keywords

Comments

Subsequence of A007774.
A111192 is a subsequence.
Subsequence of A195118. - Reinhard Zumkeller, Sep 13 2011

Examples

			a(1) = 55 = 5 * 11 = A023201(1) * A046117(1).
a(2) = 91 = 7 * 13 = A023201(2) * A046117(2).
a(3) = 187 = 11 * 17 = A023201(3) * A046117(3).
a(4) = 247 = 13 * 19 = A023201(4) * A046117(4).
a(5) = 275 = 5^2 * 11 = A023201(1)^2 * A046117(1).
a(6) = 391 = 17 * 23 = A023201(5) * A046117(5).
a(7) = 605 = 5 * 11^2 = A023201(1) * A046117(1)^2.
a(8) = 637 = 7^2 * 13 = A023201(2)^2 * A046117(2).
a(9) = 667 = 23 * 29 = A023201(6) * A046117(6).
a(10) = 1147 = 31 * 37 = A023201(7) * A046117(7).
		

Crossrefs

Programs

  • Haskell
    a143205 n = a143205_list !! (n-1)
    a143205_list = filter f [1,3..] where
       f x = length pfs == 2 && last pfs - head pfs == 6 where
           pfs = a027748_row x
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    okQ[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]]},Length[fi]==2 && Last[fi]-First[fi]==6]; Select[Range[25000],okQ]  (* Harvey P. Dale, Apr 18 2011 *)

Formula

A143201(a(n)) = 7.
A020639(a(n)) in A023201 and A006530(a(n)) in A046117.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A023201(n)+2)^2-9) = 0.058842810164... . - Amiram Eldar, Oct 26 2024
Previous Showing 21-30 of 65 results. Next