A185895
Exponential generating function is (1-x^1/1!)(1-x^2/2!)(1-x^3/3!)....
Original entry on oeis.org
1, -1, -1, 2, 3, 14, -40, -43, -357, -1762, 8004, 13067, 78540, 492439, 3932305, -26867293, -44643557, -363632466, -1729625764, -15939972937, -145669871232, 1488599170613, 3515325612655, 26765194180353, 151925998229148
Offset: 0
-
{a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, 1 - x^k / k!, 1 + x * O(x^n)), n))}
-
{a(n)=if(n<0,0,if(n==0,1,sum(k=1,n,(n-1)!/(n-k)!*a(n-k)*sumdiv(k,d,-d*d!^(-k/d)))))} [Hanna]
A275313
Number of set partitions of [n] where adjacent blocks differ in size.
Original entry on oeis.org
1, 1, 1, 4, 7, 23, 100, 333, 1443, 6910, 36035, 186958, 1095251, 6620976, 42151463, 290483173, 2030271491, 15044953241, 116044969497, 930056879535, 7749440529803, 66931578540965, 597728811956244, 5511695171795434, 52578231393128128, 515775207055816041
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 7: 1234, 123|4, 124|3, 134|2, 1|234, 1|23|4, 1|24|3.
a(5) = 23: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|2|45, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(i=j, 0,
b(n-j, `if`(j>n-j, 0, j))*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[i==j, 0, b[n-j, If[j>n-j, 0, j]]* Binomial[n-1, j-1]], {j, 1, n}]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
A327869
Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into distinct parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 4, 3, 3, 1, 5, 4, 0, 4, 1, 16, 5, 10, 10, 5, 1, 82, 66, 75, 60, 15, 6, 1, 169, 112, 126, 35, 140, 21, 7, 1, 541, 456, 196, 336, 280, 224, 28, 8, 1, 2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1, 17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 0, 1;
4, 3, 3, 1;
5, 4, 0, 4, 1;
16, 5, 10, 10, 5, 1;
82, 66, 75, 60, 15, 6, 1;
169, 112, 126, 35, 140, 21, 7, 1;
541, 456, 196, 336, 280, 224, 28, 8, 1;
2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1;
17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1;
...
-
with(combinat):
T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0),
l=select(x-> nops(x)=nops({x[]}) and
(k=0 or k in x), partition(n))):
seq(seq(T(n, k), k=0..n), n=0..11);
# second Maple program:
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):
seq(seq(T(n, k), k=0..n), n=0..11);
-
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n==0, 1, If[i<2, 0, b[n, i-1, If[i==k, 0, k]]] + If[i==k, 0, b[n-i, Min[n-i, i-1], k]/i!]]];
T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2020, from 2nd Maple program *)
A032299
"EFJ" (unordered, size, labeled) transform of 1,2,3,4,...
Original entry on oeis.org
1, 1, 2, 9, 16, 85, 516, 1519, 6280, 45441, 431740, 1394371, 8370924, 43960657, 459099018, 6135631545, 23813007376, 150537761905, 1029390040764, 7519458731131, 101693768415220, 1909742186139921, 8269148260309882, 60924484457661793, 417027498430063800
Offset: 0
-
mmax = 25;
egf = Product[1 + x^m/(m - 1)!, {m, 1, mmax}] + O[x]^mmax;
CoefficientList[egf, x] * Range[0, mmax - 1]! (* Jean-François Alcover, Sep 23 2019 *)
-
seq(n)={Vec(serlaplace(prod(k=1, n, 1 + k*x^k/k! + O(x*x^n))))} \\ Andrew Howroyd, Sep 11 2018
a(0)=1 prepended and terms a(23) and beyond from
Andrew Howroyd, Sep 11 2018
A275309
Number of set partitions of [n] with decreasing block sizes.
Original entry on oeis.org
1, 1, 1, 3, 4, 11, 36, 82, 239, 821, 3742, 10328, 42934, 156070, 729249, 4025361, 15032099, 68746675, 334541624, 1645575386, 9104991312, 65010298257, 282768687257, 1616844660914, 8660050947383, 53262316928024, 309119883729116, 2185141720645817
Offset: 0
a(3) = 3: 123, 12|3, 13|2.
a(4) = 4: 1234, 123|4, 124|3, 134|2.
a(5) = 11: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 1345|2, 134|25, 135|24, 145|23.
-
b:= proc(n, i) option remember;
`if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+
`if`(i>n, 0, b(n-i, i-1)*binomial(n-1, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n == 0, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i - 1]*Binomial[n - 1, i - 1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 21 2017, translated from Maple *)
A275310
Number of set partitions of [n] with nonincreasing block sizes.
Original entry on oeis.org
1, 1, 2, 4, 11, 30, 102, 346, 1353, 5444, 24170, 110082, 546075, 2777828, 15099359, 84491723, 499665713, 3035284304, 19375261490, 126821116410, 866293979945, 6072753348997, 44193947169228, 329387416656794, 2542173092336648, 20069525888319293
Offset: 0
a(3) = 4: 123, 12|3, 13|2, 1|2|3.
a(4) = 11: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 14|2|3, 1|2|3|4.
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(
b(n-j, j)*binomial(n-1, j-1), j=1..min(n, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, 1, Min[n, i]}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)
A275311
Number of set partitions of [n] with nondecreasing block sizes.
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 43, 89, 363, 1096, 4349, 14575, 77166, 265648, 1369284, 6700177, 33526541, 162825946, 1034556673, 5157939218, 33054650345, 206612195885, 1244742654646, 8071979804457, 62003987375957, 381323590616995, 2827411772791596, 22061592185044910
Offset: 0
a(3) = 3: 123, 1|23, 1|2|3.
a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|234, 1|2|34, 1|2|3|4.
a(5) = 12: 12345, 12|345, 13|245, 14|235, 15|234, 1|2345, 1|23|45, 1|24|35, 1|25|34, 1|2|345, 1|2|3|45, 1|2|3|4|5.
-
b:= proc(n, i) option remember; `if`(n=0, 1,
add(b(n-j, j)*binomial(n-1, j-1), j=i..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, j]*Binomial[n-1, j-1], {j, i, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 22 2017, translated from Maple *)
A275312
Number of set partitions of [n] with increasing block sizes.
Original entry on oeis.org
1, 1, 1, 2, 2, 6, 11, 28, 51, 242, 532, 1545, 6188, 16592, 86940, 302909, 967523, 3808673, 23029861, 71772352, 484629531, 1840886853, 9376324526, 37878035106, 204542429832, 1458360522892, 6241489795503, 45783932444672, 211848342780210, 1137580874772724
Offset: 0
a(4) = 2: 1234, 1|234.
a(5) = 6: 12345, 12|345, 13|245, 14|235, 15|234, 1|2345.
a(6) = 11: 123456, 12|3456, 13|2456, 14|2356, 15|2346, 16|2345, 1|23456, 1|23|456, 1|24|356, 1|25|346, 1|26|345.
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+b(n-i, i+1)*binomial(n-1, i-1)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..35);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i+1] + b[n-i, i+1] * Binomial[n-1, i-1]]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 22 2017, translated from Maple *)
A326026
Number of non-isomorphic multiset partitions of weight n where each part has a different length.
Original entry on oeis.org
1, 1, 2, 7, 12, 35, 111, 247, 624, 1843, 6717, 15020, 46847, 124808, 412577, 1658973, 4217546, 12997734, 40786810, 126971940, 437063393, 2106317043, 5499108365, 19037901867, 59939925812, 210338815573, 683526043801, 2741350650705, 14848209030691, 41533835240731, 151548411269815
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1,2}} {{1,2,2}} {{1,1,2,2}}
{{1,2,3}} {{1,2,2,2}}
{{1},{1,1}} {{1,2,3,3}}
{{1},{2,2}} {{1,2,3,4}}
{{1},{2,3}} {{1},{1,1,1}}
{{2},{1,2}} {{1},{1,2,2}}
{{1},{2,2,2}}
{{1},{2,3,3}}
{{1},{2,3,4}}
{{2},{1,2,2}}
{{3},{1,2,3}}
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
D(p,n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); polcoef(prod(k=1, #u, 1 + u[k]*x^k + O(x*x^n)), n)/prod(i=1, #v, i^v[i]*v[i]!)}
a(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Feb 08 2020
A361864
Number of set partitions of {1..n} whose block-medians have integer median.
Original entry on oeis.org
1, 0, 3, 6, 30, 96, 461, 2000, 10727, 57092, 342348
Offset: 1
The a(1) = 1 through a(4) = 6 set partitions:
{{1}} . {{123}} {{1}{234}}
{{13}{2}} {{123}{4}}
{{1}{2}{3}} {{1}{2}{34}}
{{12}{3}{4}}
{{1}{24}{3}}
{{13}{2}{4}}
The set partition {{1,2},{3},{4}} has block-medians {3/2,3,4}, with median 3, so is counted under a(4).
For mean instead of median we have
A361865.
A308037 counts set partitions with integer average block-size.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],IntegerQ[Median[Median/@#]]&]],{n,6}]
Comments