cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 282 results. Next

A323090 Number of strict factorizations of n using elements of A007916 (numbers that are not perfect powers).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 2, 0, 2, 0, 2, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 7, 1, 2, 2, 0, 2, 5, 1, 2, 2, 5, 1, 4, 1, 2, 2, 2, 2, 5, 1, 2, 0, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			The a(72) = 4 factorizations are (2*3*12), (3*24), (6*12), (72). Missing from this list and not strict are (2*2*2*3*3), (2*2*3*6), (2*6*6), (2*2*18), while missing from the list and using perfect powers are (2*36), (2*4*9), (3*4*6), (4*18), (8*9).
		

Crossrefs

Positions of 0's are A246547.
Positions of 1's are A000040.
Positions of 2's are A084227.
Positions of 3's are A085986.
Positions of 4's are A143610.

Programs

  • Mathematica
    radQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]==1];
    facssr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facssr[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],radQ]}]];
    Table[Length[facssr[n]],{n,100}]

A133432 Let m = n-th number that is not a perfect power, A007916(n). Then a(n) = smallest prime having least positive primitive root m.

Original entry on oeis.org

3, 7, 23, 41, 71, 313, 643, 4111, 457, 1031, 439, 311, 53173, 191, 107227, 409, 3361, 2161, 533821, 12391, 133321, 15791, 124153, 5881, 268969, 48889, 64609, 36721, 55441, 166031, 1373989, 156601, 2494381, 95471, 71761, 95525767
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2007

Keywords

Comments

a(n) = A023048(A007916(n)).

Crossrefs

Cf. A023048, A007916, A001597, A133433 (records).

Extensions

Definition corrected by Christopher J. Smyth, Oct 16 2013

A304492 Position in the sequence of numbers that are not perfect powers (A007916) of the last or deepest exponent in the power-tower for n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 3, 2, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 16, 17, 18, 19, 20, 2, 21, 3, 22, 23, 24, 25, 4, 26, 27, 28, 2, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 2, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 5, 55, 56, 57, 58, 59, 60
Offset: 1

Views

Author

Gus Wiseman, May 13 2018

Keywords

Comments

Let {c(i)} = A007916 denote the sequence of numbers > 1 which are not perfect powers. Every positive integer n has a unique representation as a tower n = c(x_1)^c(x_2)^c(x_3)^...^c(x_k), where the exponents are nested from the right. Then a(n) = x_k.

Crossrefs

Programs

  • Mathematica
    nn=100;
    a[n_]:=If[n==1,1,With[{g=GCD@@FactorInteger[n][[All,2]]},If[g==1,n,a[g]]]];
    rads=Union[Array[a,nn]];
    Table[a[n],{n,nn}]/.Table[rads[[i]]->i,{i,Length[rads]}]

Formula

a(n) = A278028(n, A288636(n)).

A304573 Number of non-perfect powers (A007916) less than n and relatively prime to n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 3, 3, 2, 6, 3, 8, 4, 5, 6, 11, 5, 13, 6, 8, 8, 17, 7, 15, 9, 13, 8, 21, 7, 23, 12, 14, 12, 17, 10, 27, 14, 18, 13, 31, 10, 33, 16, 19, 18, 37, 14, 33, 16, 25, 19, 42, 15, 31, 20, 29, 23, 48, 14, 50, 25, 30, 27, 38, 17, 55, 27, 36, 21, 59
Offset: 1

Views

Author

Gus Wiseman, May 14 2018

Keywords

Examples

			The a(21) = 8 positive integers less than and relatively prime to 21 that are not perfect powers are {2, 5, 10, 11, 13, 17, 19, 20}.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[2,n],And[GCD@@FactorInteger[#][[All,2]]==1,GCD[n,#]==1]&]],{n,50}]
  • PARI
    a(n) = sum(k=2, n-1, !ispower(k) && (gcd(n, k) == 1)); \\ Michel Marcus, May 15 2018

A279984 Positions of the prime numbers in the sequence of numbers that are not perfect powers (A007916).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 14, 18, 22, 24, 28, 32, 34, 38, 43, 49, 51, 56, 60, 62, 68, 71, 77, 85, 88, 90, 94, 96, 100, 112, 115, 121, 123, 132, 134, 140, 146, 150, 155, 161, 163, 173, 175, 178, 180, 192, 203, 206, 208, 212, 218, 220, 229, 234, 240, 246, 248, 254
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;rads=Select[Range[2,nn],GCD@@FactorInteger[#][[All,2]]===1&];
    Table[Position[rads,Prime[n]][[1,1]],{n,PrimePi[nn]}]
  • PARI
    lista(nn) = Vec(select(x->isprime(x), Vec(select(x->(!ispower(x)&&x>1), [1..nn])), 1)); \\ Michel Marcus, May 04 2018
    
  • Python
    from sympy import prime, mobius, integer_nthroot
    def A279984(n): return int((p:=prime(n))-1+sum(mobius(k)*(integer_nthroot(p,k)[0]-1) for k in range(2,p.bit_length()))) # Chai Wah Wu, Oct 12 2024

Formula

A007916(a(n)) = A000040(n).

A357986 a(n) is the unique k such that A357579(k) = A007916(n), or -1 if no such k exists.

Original entry on oeis.org

1, 2, 4, 5, 3, 7, 8, 6, 12, 14, 11, 9, 10, 16, 13, 20, 19, 15, 25, 18, 17, 21, 27, 26, 22, 29, 23, 24, 28, 31, 32, 30, 36, 34, 33, 38, 35, 43, 41, 44, 37, 46, 40, 39, 49, 51, 42, 48, 45, 50, 47, 55, 57, 54, 52, 53, 63, 58, 56, 67, 60, 59, 62, 65, 61, 69, 66
Offset: 1

Views

Author

Rémy Sigrist, Oct 23 2022

Keywords

Examples

			A357579(36) = 42 = A007916(33), so a(33) = 36.
		

Crossrefs

Programs

  • PARI
    See Links section.

A292127 a(1) = 1, a(r(n)^k) = 1 + k * a(n) where r(n) is the n-th number that is not a perfect power A007916(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 7, 7, 8, 6, 7, 8, 8, 7, 9, 7, 7, 8, 9, 9, 6, 8, 10, 8, 7, 8, 9, 10, 10, 7, 9, 11, 9, 8, 9, 10, 11, 9, 11, 8, 10, 12, 10, 9, 10, 11, 12, 10, 12, 9, 11, 13, 7, 11, 10, 11, 12, 13, 11, 13, 10, 12, 14, 8, 12, 11
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2017

Keywords

Comments

Any positive integer greater than 1 can be written uniquely as a perfect power r(n)^k. We define a planted achiral (or generalized Bethe) tree b(n) for any positive integer greater than 1 by writing n as a perfect power r(d)^k and forming a tree with k branches all equal to b(d). Then a(n) is the number of nodes in b(n).

Examples

			The first nineteen planted achiral trees are:
o,
(o),
((o)), (oo),
(((o))), ((oo)),
((((o)))), (ooo), ((o)(o)), (((oo))),
(((((o))))), ((ooo)), (((o)(o))), ((((oo)))),
((((((o)))))), (oooo), (((ooo))), ((((o)(o)))), (((((oo))))).
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    rads=Select[Range[2,nn],GCD@@FactorInteger[#][[All,2]]===1&];
    a[1]:=1;a[n_]:=With[{k=GCD@@FactorInteger[n][[All,2]]},1+k*a[Position[rads,n^(1/k)][[1,1]]]];
    Array[a,nn]

A001597 Perfect powers: m^k where m > 0 and k >= 2.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764
Offset: 1

Views

Author

Keywords

Comments

Might also be called the nontrivial powers. - N. J. A. Sloane, Mar 24 2018
See A175064 for number of ways to write a(n) as m^k (m >= 1, k >= 1). - Jaroslav Krizek, Jan 23 2010
a(1) = 1, for n >= 2: a(n) = numbers m such that sum of perfect divisors of x = m has no solution. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) for n >= 2 is complement of A175082. - Jaroslav Krizek, Jan 24 2010
A075802(a(n)) = 1. - Reinhard Zumkeller, Jun 20 2011
Catalan's conjecture (now a theorem) is that 1 occurs just once as a difference, between 8 and 9.
For a proof of Catalan's conjecture, see the paper by Metsänkylä. - L. Edson Jeffery, Nov 29 2013
m^k is the largest number n such that (n^k-m)/(n-m) is an integer (for k > 1 and m > 1). - Derek Orr, May 22 2014
From Daniel Forgues, Jul 22 2014: (Start)
a(n) is asymptotic to n^2, since the density of cubes and higher powers among the squares and higher powers is 0. E.g.,
a(10^1) = 49 (49% of 10^2),
a(10^2) = 6400 (64% of 10^4),
a(10^3) = 804357 (80.4% of 10^6),
a(10^4) = 90706576 (90.7% of 10^8),
a(10^n) ~ 10^(2n) - o(10^(2n)). (End)
A proper subset of A001694. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 6400, 804357, 90706576, 9565035601, 979846576384, 99066667994176, 9956760243243489, ... . - Robert G. Wilson v, Aug 15 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D9.
  • René Schoof, Catalan's Conjecture, Springer-Verlag, 2008, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007916.
Subsequence of A072103; A072777 is a subsequence.
Union of A075109 and A075090.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2), and which are sometimes confused with the present sequence.
First differences give A053289.

Programs

  • Haskell
    import Data.Map (singleton, findMin, deleteMin, insert)
    a001597 n = a001597_list !! (n-1)
    (a001597_list, a025478_list, a025479_list) =
       unzip3 $ (1, 1, 2) : f 9 (3, 2) (singleton 4 (2, 2)) where
       f zz (bz, ez) m
        | xx < zz = (xx, bx, ex) :
                    f zz (bz, ez+1) (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        | xx > zz = (zz, bz, 2) :
                    f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
        | otherwise = f (zz+2*bz+1) (bz+1, 2) m
        where (xx, (bx, ex)) = findMin m  --  bx ^ ex == xx
    -- Reinhard Zumkeller, Mar 28 2014, Oct 04 2012, Apr 13 2012
    
  • Magma
    [1] cat [n : n in [2..1000] | IsPower(n) ];
    
  • Maple
    isA001597 := proc(n)
        local e ;
        e := seq(op(2,p),p=ifactors(n)[2]) ;
        return ( igcd(e) >=2 or n =1 ) ;
    end proc:
    A001597 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA001597(a) then
                    return a ;
                end if;
             end do;
        end if;
    end proc:
    seq(A001597(n),n=1..70) ; # R. J. Mathar, Jun 07 2011
    N:= 10000: # to get all entries <= N
    sort({1,seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}); # Robert FERREOL, Jul 18 2023
  • Mathematica
    min = 0; max = 10^4;  Union@ Flatten@ Table[ n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}] (* T. D. Noe, Apr 18 2011; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 1765, perfectPowerQ] (* Ant King, Jun 29 2013; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
    nextPerfectPower[n_] := If[n == 1, 4, Min@ Table[ (Floor[n^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ n}]]; NestList[ nextPerfectPower, 1, 55] (* Robert G. Wilson v, Aug 11 2014 *)
    Join[{1},Select[Range[2000],GCD@@FactorInteger[#][[All,2]]>1&]] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    {a(n) = local(m, c); if( n<2, n==1, c=1; m=1; while( cMichael Somos, Aug 05 2009 */
    
  • PARI
    is(n)=ispower(n) || n==1 \\ Charles R Greathouse IV, Sep 16 2015
    
  • PARI
    list(lim)=my(v=List(vector(sqrtint(lim\=1),n,n^2))); for(e=3,logint(lim,2), for(n=2,sqrtnint(lim,e), listput(v,n^e))); Set(v) \\ Charles R Greathouse IV, Dec 10 2019
    
  • Python
    from sympy import perfect_power
    def ok(n): return n==1 or perfect_power(n)
    print([m for m in range(1, 1765) if ok(m)]) # Michael S. Branicky, Jan 04 2021
    
  • Python
    import sympy
    class A001597() :
        def _init_(self) :
            self.a = [1]
        def at(self, n):
            if n <= len(self.a):
                return self.a[n-1]
            else:
                cand = self.at(n-1)+1
                while sympy.perfect_power(cand) == False:
                    cand += 1
                self.a.append(cand)
                return cand
    a001597 = A001597()
    for n in range(1,20):
        print(a001597.at(n)) # R. J. Mathar, Mar 28 2023
    
  • Python
    from sympy import mobius, integer_nthroot
    def A001597(n):
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 13 2024
  • Sage
    def A001597_list(n) :
        return [k for k in (1..n) if k.is_perfect_power()]
    A001597_list(1764) # Peter Luschny, Feb 03 2012
    

Formula

Goldbach showed that Sum_{n >= 2} 1/(a(n)-1) = 1.
Formulas from postings to the Number Theory List by various authors, 2002:
Sum_{i >= 2} Sum_{j >= 2} 1/i^j = 1;
Sum_{k >= 2} 1/(a(k)+1) = Pi^2 / 3 - 5/2;
Sum_{k >= 2} 1/a(k) = Sum_{n >= 2} mu(n)(1- zeta(n)) approx = 0.87446436840494... See A072102.
For asymptotics see Newman.
For n > 1: gcd(exponents in prime factorization of a(n)) > 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n^2. - Thomas Ordowski, Nov 04 2012
a(n) = n^2 - 2*n^(5/3) - 2*n^(7/5) + (13/3)*n^(4/3) - 2*n^(9/7) + 2*n^(6/5) - 2*n^(13/11) + o(n^(13/11)) (Jakimczuk, 2012). - Amiram Eldar, Jun 30 2023

Extensions

Minor corrections from N. J. A. Sloane, Jun 27 2010

A000837 Number of partitions of n into relatively prime parts. Also aperiodic partitions.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 63, 100, 119, 167, 209, 296, 347, 489, 582, 775, 945, 1254, 1481, 1951, 2334, 2980, 3580, 4564, 5386, 6841, 8118, 10085, 12012, 14862, 17526, 21636, 25524, 31082, 36694, 44582, 52255, 63260, 74170, 88931, 104302
Offset: 0

Views

Author

Keywords

Comments

Starting (1, 1, 2, 3, 6, 7, 14, ...), = row sums of triangle A137585. - Gary W. Adamson, Jan 27 2008
Triangle A168532 has aerated variants of this sequence in each column starting with offset 1, row sums = A000041. - Gary W. Adamson, Nov 28 2009
A partition is aperiodic iff its multiplicities are relatively prime, i.e., its Heinz number (A215366) is not a perfect power (A007916). - Gus Wiseman, Dec 19 2017
This sequence is monotonically increasing; each partition of n-1 can have a part of size 1 added to it to get a partition counted in a(n). - Franklin T. Adams-Watters, Jul 24 2020

Examples

			Of the 11 partitions of 6, we must exclude 6, 4+2, 3+3 and 2+2+2, so a(6) = 11 - 4 = 7.
For n=6, 2+2+1+1 is periodic because it can be written 2*(2+1), similarly 1+1+1+1+1+1, 3+3 and 2+2+2.
The a(6) = 7 partitions into relatively prime parts are (51), (411), (321), (3111), (2211), (21111), (111111). The a(6) = 7 aperiodic partitions are (6), (51), (42), (411), (321), (3111), (21111). - _Gus Wiseman_, Dec 19 2017
		

References

  • H. W. Gould, personal communication.

Crossrefs

Programs

  • Mathematica
    p[n_] := IntegerPartitions[n]; l[n_] := Length[p[n]]; g[n_, j_] := Apply[GCD, Part[p[n], j]]; h[n_] := Table[g[n, j], {j, 1, l[n]}]; Join[{1}, Table[Count[h[n], 1], {n, 1, 20}]]
    (* Clark Kimberling, Mar 09 2012 *)
    a[0] = 1; a[n_] := Sum[ MoebiusMu[n/d] * PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 03 2013 *)
  • PARI
    N=66; x='x+O('x^N); gf=2+sum(n=1,N, (1/eta(x^n))*moebius(n)); Vec(gf) \\ Joerg Arndt, May 11 2013
    
  • PARI
    print1("1, "); for(n=1,46,my(s=0);forpart(X=n,s+=gcd(X)==1);print1(s,", ")) \\ Hugo Pfoertner, Mar 27 2020
    
  • Python
    from sympy import npartitions, mobius, divisors
    def a(n): return 1 if n==0 else sum(mobius(n//d)*npartitions(d) for d in divisors(n)) # Indranil Ghosh, Apr 26 2017

Formula

Möbius transform of A000041. - Christian G. Bower, Jun 11 2000
Product_{n>0} 1/(1-q^n) = 1 + Sum_{n>0} a(n)*q^n/(1-q^n). - Mamuka Jibladze, Nov 14 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
a(n) <= p(n) <= a(n+1), where p(n) is the number of partitions of n (A000041). - Franklin T. Adams-Watters, Jul 24 2020

Extensions

Corrected and extended by David W. Wilson, Aug 15 1996
Additional name from Christian G. Bower, Jun 11 2000

A072774 Powers of squarefree numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 10 2002

Keywords

Comments

Essentially the same as A062770. - R. J. Mathar, Sep 25 2008
Numbers m such that in canonical prime factorization all prime exponents are identical: A124010(m,k) = A124010(m,1) for k = 2..A000005(m). - Reinhard Zumkeller, Apr 06 2014
Heinz numbers of uniform partitions. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 16 2018

Crossrefs

Complement of A059404.
Cf. A072775, A072776, A072777 (subsequence), A005117, A072778, A124010, A329332 (tabular arrangement), A384667 (characteristic function).
A subsequence of A242414.

Programs

  • Haskell
    import Data.Map (empty, findMin, deleteMin, insert)
    import qualified Data.Map.Lazy as Map (null)
    a072774 n = a072774_list !! (n-1)
    (a072774_list, a072775_list, a072776_list) = unzip3 $
       (1, 1, 1) : f (tail a005117_list) empty where
       f vs'@(v:vs) m
        | Map.null m || xx > v = (v, v, 1) :
                                 f vs (insert (v^2) (v, 2) m)
        | otherwise = (xx, bx, ex) :
                      f vs' (insert (bx*xx) (bx, ex+1) $ deleteMin m)
        where (xx, (bx, ex)) = findMin m
    -- Reinhard Zumkeller, Apr 06 2014
    
  • Maple
    isA := n -> n=1 or is(1 = nops({seq(p[2], p in ifactors(n)[2])})):
    select(isA, [seq(1..97)]);  # Peter Luschny, Jun 10 2025
  • Mathematica
    Select[Range[100], Length[Union[FactorInteger[#][[All, 2]]]] == 1 &] (* Geoffrey Critzer, Mar 30 2015 *)
  • PARI
    is(n)=ispower(n,,&n); issquarefree(n) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A072774(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))-1
        def f(x): return n-2+x-sum(g(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024

Formula

a(n) = A072775(n)^A072776(n).
Sum_{n>=1} 1/a(n)^s = 1 + Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025
a(n)/n ~ Pi^2/6 (A013661). - Friedjof Tellkamp, Jun 09 2025
Previous Showing 21-30 of 282 results. Next