cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 1118 results. Next

A347960 Numbers k for which A348036(k) > A007947(k).

Original entry on oeis.org

36, 72, 100, 108, 144, 180, 196, 200, 216, 225, 252, 288, 300, 324, 360, 392, 396, 400, 432, 450, 468, 484, 500, 504, 540, 576, 588, 600, 612, 648, 675, 676, 684, 700, 720, 756, 784, 792, 800, 828, 864, 900, 936, 968, 972, 980, 1000, 1008, 1044, 1080, 1089, 1100, 1116, 1125, 1152, 1156, 1176, 1188, 1200, 1224, 1260, 1296
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2021

Keywords

Comments

Numbers k such that A348039(k) > 1.
Numbers k such that A348037(k) < A003557(k).
Numbers k such that A327564(k) > A348038(k).
Differs from A036785 and A338539 for the first time at n=20, where a(n) = 450, as A036785(20) = A338539(20) = 441 is not included in this sequence.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^(e - 1); q[n_] := GCD[n, Times @@ f @@@ (fct = FactorInteger[n])] > Times @@ First /@ fct; Select[Range[1300], q] (* Amiram Eldar, Oct 20 2021 *)
  • PARI
    A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
    A007947(n) = factorback(factorint(n)[, 1]);
    A348036(n) = gcd(n, A003968(n));
    isA347960(n) = (A348036(n)>A007947(n));

A360767 Numbers k that are neither prime power nor squarefree, such that k/rad(k) < q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

12, 20, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 92, 99, 104, 116, 117, 124, 132, 136, 140, 148, 152, 153, 156, 164, 171, 172, 175, 176, 184, 188, 204, 207, 208, 212, 220, 228, 232, 236, 244, 248, 260, 261, 268, 272, 275, 276, 279, 280, 284, 292, 296, 297, 304, 308, 315, 316, 325, 328, 332, 333
Offset: 1

Views

Author

Michael De Vlieger, Feb 28 2023

Keywords

Comments

Proper subsequence of A126706.
Numbers k such that there does not exist j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 12, since 12/6 < 3.
a(2) = 20, since 20/10 < 5.
a(3) = 28, since 28/14 < 7.
a(4) = 40, since 40/10 < 5, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[120], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 < #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    f(n) = if (isprimepower(n) || (n==1), 1, my(f=factor(n)[, 1]); f[2]); \\ A119288
    isok(k) = !isprimepower(k) && !issquarefree(k) && (k/rad(k) < f(k)); \\ Michel Marcus, Mar 01 2023

Formula

This sequence is { k in A126706 : k/A007947(k) < A119288(k) } = A126706 \ A360768.

A363061 Number of k <= P(n) such that rad(k) | P(n), where rad(n) = A007947(n) and P(n) = A002110(n).

Original entry on oeis.org

1, 2, 5, 18, 68, 283, 1161, 4843, 19985, 83074, 349670, 1456458, 6107257, 25547835, 106115655, 440396113, 1833079809, 7642924612, 31705433101, 131711607956, 546283729493, 2257462298234, 9339325821411, 38593708318690, 159600066415313, 661371515924516, 2736805917843710
Offset: 0

Views

Author

Michael De Vlieger, Jun 16 2023

Keywords

Examples

			a(0) = 1 since P(0) = 1 and 1 | 1.
a(1) = 2 since P(1) = 2 and both 1 | 2 and 2 | 2.
a(2) = 5 since P(2) = 6 and rad(m) | 6 for m = {1, 2, 3, 4, 6}.
a(3) = 18 since P(3) = 30 and rad(m) | 30 for m = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30}, etc.
Regarding a(3), we see that there are 18 terms in the tensor product of prime power ranges of 2, 3, and 5 that do not exceed 30:
5^0X | 2^0 2^1 2^2 2^3 2^4    5^1X | 2^0 2^1 2^2    5^2X | 2^0
--------------------------    ------------------    ----------
3^0  |   1   2   4   8  16    3^0  |   5  10  20    3^0  |  25
3^1  |   3   6  12  24        3^1  |  15  30
3^2  |   9  18
3^3  |  27
Hence, a(3) = 18. This approach proves handy for larger n.
		

Crossrefs

Programs

  • Mathematica
    f[1] = 1; f[n_] := Function[w,
    ToExpression@ StringJoin["Block[{n = ", ToString@ n,
        ", k = 0}, Flatten@ Table[k++, ",
        Most@ Flatten@ Map[{#, ", "} &, #], "]; k]"] &@
          MapIndexed[
            Function[p, StringJoin["{", ToString@ Last@ p, ", 0, Log[",
              ToString@ First@ p, ", n/(",
              ToString@ InputForm[Times @@ Map[Power @@ # &, Take[w, First@ #2 - 1]]],
              ")]}"] ]@ w[[First@ #2]] &, w]]@
       Map[{#, ToExpression["p" <> ToString@ PrimePi@ #]} &,
         FactorInteger[n][[All, 1]]];
       Map[f, FoldList[Times, 1, Prime@ Range@ 9] ]

Formula

a(n) = A010846(A002110(n)).
a(n) >= 2^n.

Extensions

Corrected a(15) and added a(16)-a(23) from Bert Dobbelaere, Jun 27 2023
a(24)-a(26) from Martin Ehrenstein, Jul 08 2023

A381801 Irregular triangle read by rows: row n lists the residues r mod n of numbers k such that rad(k) | n, where rad = A007947.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 4, 0, 1, 0, 1, 2, 4, 0, 1, 3, 0, 1, 2, 4, 5, 6, 8, 0, 1, 0, 1, 2, 3, 4, 6, 8, 9, 0, 1, 0, 1, 2, 4, 7, 8, 0, 1, 3, 5, 6, 9, 10, 12, 0, 1, 2, 4, 8, 0, 1, 0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 16, 0, 1, 0, 1, 2, 4, 5, 8, 10, 12, 16
Offset: 1

Views

Author

Michael De Vlieger, Mar 07 2025

Keywords

Comments

Define S(p,n) to be the set of residues r (mod n) taken by the power range of prime divisor p, i.e., {p^m, m >= 1}.
Define T(n) to be the union of the tensor product of distinct terms in S(p,n) for all p|n, where the products are expressed mod n.
Row n of this triangle is T(n), a superset of row n of A381799.
For n > 1, the intersection of row n of this triangle and row n of A038566 is {1}.

Examples

			Table of c(n) = A381800(n) and T(n) for select n:
 n  c(n)  T(n)
-----------------------------------------------------------------------------
 1    1   {0}
 2    2   {0, 1}
 3    2   {0, 1}
 4    3   {0, 1, 2}
 5    2   {0, 1}
 6    5   {0, 1, 2, 3, 4}
 8    4   {0, 1, 2, 4}
 9    3   {0, 1, 3}
10    7   {0, 1, 2, 4, 5, 6, 8}
11    2   {0, 1}
12    8   {0, 1, 2, 3, 4, 6, 8, 9}
14    6   {0, 1, 2, 4, 7, 8}
15    8   {0, 1, 3, 5, 6, 9, 10, 12}
16    5   {0, 1, 2, 4, 8}
18   12   {0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 16}
20    9   {0, 1, 2, 4, 5, 8, 10, 12, 16}
24   11   {0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18}
28    9   {0, 1, 2, 4, 7, 8, 14, 16, 21}
30   19   {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27}
36   16   {0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32}
For n = 10, we have S(2,10) = {1, 2, 4, 6, 8} and S(5,10) = {1, 5}. Therefore we have the following distinct products:
   1  2  4  8  6
   5  0
Hence T(10) = {0, 1, 2, 4, 5, 6, 8}; terms in A003592 belong to these residues (mod 10).
For n = 12, we have S(2,12) = {1, 2, 4, 8} and S(3,12) = {1, 3, 9}. Therefore we have the following distinct products:
   1  2  4  8
   3  6  0
   9
Thus T(12) = {0, 1, 2, 3, 4, 6, 8, 9}, terms in A003586 belong to these residues (mod 12).
For n = 30, we have {1, 2, 4, 8, 16}, {1, 3, 9, 21, 27}, and {1, 5, 25}. Therefore we have the following distinct products:
   1  2  4  8  16         5  10  20         25
   3  6 12 24            15   0
   9 18
  27
Thus T(30) = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27}; terms in A051037 belong to these residues (mod 30).
		

Crossrefs

Programs

  • Mathematica
    Table[Union@ Flatten@ Mod[TensorProduct @@ Map[(p = #; NestWhileList[Mod[p*#, n] &, 1, UnsameQ, All]) &, FactorInteger[n][[All, 1]] ], n], {n, 30}]

Formula

Row 1 is {0} since 1 is the empty product and the only number that has zero prime factors is 1, congruent to 0 (mod 1).
Row n begins with {0,1} for n > 1.
For prime p, row p = {0,1}.
For prime power p^m, m > 0, row p = union of {0} and {p^i, i < m}.
Row n is a subset of row n of A121998, considering n in A121998 instead as n mod n = 0.
Row n is a superset of row n of A162306, considering n in A162306 instead as n mod n = 0.

A062759 Largest power of squarefree kernel of n (= A007947) which divides n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 6, 13, 14, 15, 16, 17, 6, 19, 10, 21, 22, 23, 6, 25, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 49, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 64, 65, 66, 67, 34, 69, 70, 71, 36, 73
Offset: 1

Views

Author

Labos Elemer, Jul 16 2001

Keywords

Comments

a(n) is a first power if and only if n is not a powerful number (A001694, A052485).

Examples

			n = 1800: squarefree kernel is 2*3*5 = 30 and a(1800) = 900 = 30^2 divides n, exponent of 30 is the smallest prime exponent of 1800 = 2*2*2*3*3*5*5.
		

Crossrefs

Programs

  • Haskell
    a062759 n = a007947 n ^ a051904 n  -- Reinhard Zumkeller, Jul 15 2012
    
  • Mathematica
    {1}~Join~Table[#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 73}] (* Michael De Vlieger, Nov 02 2017 *)
    a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] = e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    a(n) = {if(n==1, 1, my(f = factor(n), e = vecmin(f[,2])); prod(i = 1, #f~, f[i,1]^e));} \\ Amiram Eldar, Feb 12 2023

Formula

a(n) = A007947(n)^A051904(n).
From Amiram Eldar, Feb 12 2023: (Start)
a(n) = n/A062759(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 / 2 = 0.352221... . (End)

A066087 a(n) = gcd(sigma(n), phi(n)) - gcd(sigma(rad(n)), phi(rad(n))); rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, -1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 2, 1, -1, 0, -4, 0, 4, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -4, -2, 0, 0, 0, 0, -1, 0, 0, -4, 0, 0, 0, 18, 0, -2, 0, 2, 0, 0, 0, 2, 0, -3, 8, -1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 12, -6
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1, n], EulerPhi@ n] - GCD[DivisorSigma[1, #], EulerPhi@ #] &[Times @@ FactorInteger[n][[All, 1]]], {n, 120}] (* Michael De Vlieger, Feb 19 2017 *)
  • PARI
    rad(f)=for(i=1,#f~,f[i,2]=1); f
    g(f)=gcd(sigma(f),eulerphi(f))
    a(n)=my(f=factor(n),k=rad(f)); g(f)-g(k) \\ Charles R Greathouse IV, Dec 09 2013

Formula

A009223(n) - A066086(n) = gcd(sigma(n), phi(n)) - gcd(sigma(A007947(n)), phi(A007947(n))).

A075425 Number of steps to reach 1 starting with n and iterating the map n ->rad(n)-1, where rad(n) is the squarefree kernel of n (A007947).

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 3, 4, 5, 6, 1, 2, 3, 4, 3, 4, 5, 6, 3, 2, 3, 2, 5, 6, 7, 8, 1, 2, 3, 4, 3, 4, 5, 6, 3, 4, 5, 6, 5, 6, 7, 8, 3, 4, 3, 4, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 9, 4, 1, 2, 3, 4, 3, 4, 5, 6, 3, 4, 5, 6, 5, 6, 7, 8, 3, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 7, 8, 9, 10, 3, 4, 5, 2, 3, 4, 5, 6, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 15 2002

Keywords

Comments

Sequence is defined for all n, as A075423(n) < n.

Programs

  • Haskell
    a075425 n = snd $ until ((== 1) . fst)
                            (\(x, i) -> (a075423 x, i + 1)) (n, 0)
    -- Reinhard Zumkeller, Aug 14 2013
  • PARI
    rad(n)=vecprod(factor(n)[,1])
    a(n)=my(k);while(n>1,n=rad(n)-1;k++); k \\ Charles R Greathouse IV, Jul 09 2013
    

A078313 Number of distinct prime factors of n*rad(n)+1, where rad=A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 3, 2, 2, 4, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 4, 1, 2, 2, 3, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 1, 2, 1, 3, 1, 3, 3, 2, 2, 3, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

a(n)=A001221(A078310(n)).

Crossrefs

Programs

A078314 Total number of prime factors of n*rad(n)+1 counted with multiplicity, where rad = A007947 (squarefree kernel).

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 1, 3, 2, 4, 3, 4, 2, 4, 2, 4, 2, 2, 3, 3, 3, 3, 2, 5, 2, 2, 1, 2, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 1, 4, 1, 2, 4, 3, 2, 2, 3, 3, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 1, 2, 1, 3, 1, 4, 3, 2, 2, 3, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a078314 = a001222 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := PrimeOmega[1 + n * Times @@ FactorInteger[n][[;;, 1]]]; Array[a, 100] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n)=bigomega(n*vecprod(factor(n)[,1])+1) \\ Charles R Greathouse IV, Jul 09 2013
    

Formula

a(n) = A001222(A078310(n)).

A078315 Minimum exponent in prime factorization of n*rad(n)+1, where rad = A007947 (the radical or squarefree kernel).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 23 2002

Keywords

Comments

2 = a(4) = a(45) = a(48) = a(140) = a(529) = a(682) = a(3264) = a(3564) = a(4680) = a(4756) = a(166320) = a(194873) = a(330096) = a(364905) = a(2100332) = a(4160200) with all terms in between equal to 1. Is there an n with a(n) > 2? - Charles R Greathouse IV, May 20 2013

Crossrefs

Programs

  • Haskell
    a078315 = a051904 . a078310  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := Min[FactorInteger[1 + n * Times @@ FactorInteger[n][[;;, 1]]][[;;, 2]]]; Array[a, 100] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n)=my(f=factor(n));f[,2]=apply(n->n+1,f[,2]);vecmin(factor(factorback(f)+1)[,2]) \\ Charles R Greathouse IV, May 20 2013
    

Formula

a(n) = A051904(A078310(n)).
Previous Showing 31-40 of 1118 results. Next