cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 315 results. Next

A088117 Let the decimal expansion of n be abcd...; then a(n) = (a*bcd... + b*acd... + c*abd... + d*abc... + ...) + (ab*cd... + bc*ad... + cd*ab... + ...) + ... . That is, a(n) = sum over all the digit strings of the product (number obtained by deleting a digit string) * (deleted digit string).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 11
Offset: 0

Views

Author

Amarnath Murthy, Sep 25 2003

Keywords

Comments

Each substring is used in only product.
a(n) = 0 for 0 <= n <= 10.

Examples

			a(1234) = (1*234 + 2*134 + 3*124 + 4*123) + (12*34 + 23*14) = 2096.
a(12345) = (1*2345 + 2*1345 + 3*1245 + 4*1235 + 5*1234) + (12*345 + 15*234 + 23*145 + 34*125 + 45*123) = 40650.
		

Crossrefs

Different from A035930, A171765, A257850.

Programs

  • Maple
    a:= n-> (s-> add(add(parse(s[i..j])*parse(cat(s[1..i-1],
        s[j+1..length(s)])), i=1..j), j=1..length(s)-1))(""||n):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 22 2021

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jul 14 2007
a(0)=0 inserted and examples corrected by Alois P. Heinz, May 22 2021

A089898 Product of (digits of n each incremented by 1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 8, 16, 24, 32, 40, 48, 56, 64
Offset: 0

Views

Author

Marc LeBrun, Nov 13 2003

Keywords

Comments

Sum of products of all subsets of digits of n (with the empty subset contributing 1).
Number of nonnegative values k such that the lunar sum of k and n is n.
First 100 values are 10 X 10 multiplication table, read by rows/columns.

Examples

			a(12)=6 since (1+1)*(2+1)=2*3=6 and since (1*2)+(1)+(2)+(1)=2+1+2+1=6 and since the lunar sum of 12 with any of the six values {0,1,2,10,11,12} is 12.
		

Crossrefs

Programs

  • Haskell
    a089898 n = if n < 10 then n + 1 else (d + 1) * a089898 n'
                where (n', d) = divMod n 10
    -- Reinhard Zumkeller, Jul 06 2014
  • Maple
    seq(convert(map(`+`,convert(n,base,10),1),`*`), n = 0 .. 1000); # Robert Israel, Nov 17 2014
  • Mathematica
    a089898[n_Integer] :=
    Prepend[Array[Times @@ (IntegerDigits[#] + 1) &, n], 1]; a089898[77] (* Michael De Vlieger, Dec 22 2014 *)
  • PARI
    a(n) = my(d=digits(n)); prod(i=1, #d, d[i]+1); \\ Michel Marcus, Apr 06 2014
    
  • PARI
    a(n) = vecprod(apply(x->x+1, digits(n))); \\ Michel Marcus, Feb 01 2023
    

Formula

a(n) = a(floor(n/10))*(1+(n mod 10)). - Robert Israel, Nov 17 2014
G.f. g(x) satisfies g(x) = (10*x^11 - 11*x^10 + 1)*g(x^10)/(x-1)^2. - Robert Israel, Nov 17 2014

A246558 Product of the digits of the n-th Fibonacci number.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 3, 2, 12, 25, 72, 16, 18, 147, 0, 504, 315, 320, 32, 1260, 0, 49, 3360, 3456, 0, 162, 1728, 168, 720, 0, 7776, 0, 33600, 0, 30240, 0, 15680, 0, 311040, 0, 0, 326592, 435456, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102060, 3951360, 24883200, 1411200
Offset: 0

Views

Author

Indrani Das, Nov 12 2014

Keywords

Comments

a(n) > 0 iff n in A076564.
Probably, the last nonzero term is a(184). - Giovanni Resta, Jul 14 2015

Examples

			Fibonacci(7) = 13, thus a(7) = 1*3 = 3.
		

Crossrefs

Programs

  • Haskell
    a246558 = a007954 . a000045 -- Reinhard Zumkeller, Nov 17 2014
    
  • Magma
    [0] cat [&*Intseq(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jan 04 2020
    
  • Mathematica
    Array[Times@@IntegerDigits@Fibonacci[#]&, 100, 0] (* Vincenzo Librandi, Jan 04 2020 *)
  • PARI
    a(n) = if (n, vecprod(digits(fibonacci(n))), 0); \\ Michel Marcus, Feb 11 2025

Formula

a(n) = A007954(A000045(n)). - Reinhard Zumkeller, Nov 17 2014

A249334 Numbers for which the digital sum contains the same distinct digits as the digital product.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 99, 123, 132, 213, 231, 312, 321, 1124, 1137, 1142, 1173, 1214, 1241, 1317, 1371, 1412, 1421, 1713, 1731, 2114, 2141, 2411, 3117, 3171, 3344, 3434, 3443, 3711, 4112, 4121, 4211, 4334, 4343, 4433, 7113, 7131, 7311, 11125, 11133
Offset: 1

Views

Author

Jaroslav Krizek, Oct 25 2014

Keywords

Comments

Numbers k such that A007953(k) contains the same distinct digits as A007954(k). (But either of the two may contain some digit(s) more than once.)
Supersequence of A034710 (positive numbers for which the sum of digits is equal to the product of digits).
Union of A034710 and A249335.
The sequence is infinite since, e.g., A002275(n) = (10^n-1)/9 is in the sequence for all n = A002275(k), k>=0; and more generally N(k,d) = A002275(n)-1+d with n = (A002275(k)-1)*d+1, k>0 and 0M. F. Hasler, Oct 29 2014

Examples

			1137 is a term because 1+1+3+7 = 12 and 1*1*3*7 = 21.
3344 is a term because 3+3+4+4=14 has the same (distinct) digits as 3*3*4*4=144.
		

Crossrefs

Programs

  • Magma
    [0] cat [n: n in [1..10^6] | Set(Intseq(&*Intseq(n))) eq Set(Intseq(&+Intseq(n)))];
    
  • Mathematica
    Select[Range[0,12000],Union[IntegerDigits[Total[IntegerDigits[#]]]]==Union[IntegerDigits[Times@@IntegerDigits[#]]]&] (* Harvey P. Dale, Aug 17 2025 *)
  • PARI
    is_A249334(n)=Set(digits(sumdigits(n)))==Set(digits(prod(i=1,#n=digits(n),n[i]))) \\ M. F. Hasler, Oct 29 2014

A336876 a(n) is the least m such that A336826(n) = m*p(m) (where p(m) is the product of decimal digits of m).

Original entry on oeis.org

0, 1, 2, 3, 11, 4, 12, 5, 6, 13, 21, 7, 14, 8, 15, 9, 22, 31, 16, 111, 17, 23, 18, 41, 19, 24, 112, 121, 25, 51, 33, 26, 42, 113, 61, 27, 131, 34, 211, 28, 114, 122, 71, 43, 52, 29, 35, 141, 115, 36, 116, 44, 123, 62, 151, 37, 132, 53, 91, 212, 221, 45, 38
Offset: 1

Views

Author

Rémy Sigrist, Aug 06 2020

Keywords

Comments

Some terms of A336826 have several representations as the product of a number and of its decimal digits; for example 549504 has four such representations: 1696 * 1 * 6 * 9 * 6, 2862 * 2 * 8 * 6 * 2, 3392 * 3 * 3 * 9 * 2 and 3816 * 3 * 8 * 1 * 6.

Examples

			For n = 26:
- A336826(26) = 192,
- the divisors d of 192, alongside d*p(d), are:
  d    d*p(d)
  ---  ------
    1       1
    2       4
    3       9
    4      16
    6      36
    8      64
   12      24
   16      96
   24     192
   32     192
   48    1536
   64    1536
   96    5184
  192    3456
- so a(26) = min(24, 32) = 24.
		

Crossrefs

Programs

  • C
    See Links section.

Formula

A098736(a(n)) = A336826(n).

A350186 Numbers of multiplicative persistence 7 which are themselves the product of digits of a number.

Original entry on oeis.org

338688, 826686, 2239488, 3188646, 6613488, 14224896, 3416267673274176, 6499837226778624
Offset: 1

Views

Author

Daniel Mondot, Jan 15 2022

Keywords

Comments

The multiplicative persistence of a number mp(n) is the number of times the product of digits function p(n) must be applied to reach a single digit, i.e., A031346(n).
The product of digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 8.
There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for sequences A350181....
Equivalently:
This sequence consists of the numbers A007954(k) such that A031346(k) = 8,
These are the numbers k in A002473 such that A031346(k) = 7,
Or:
- they factor into powers of 2, 3, 5 and 7 exclusively.
- p(n) goes to a single digit in 7 steps.
Postulated to be finite and complete.
a(9), if it exists, is > 10^20000, and likely > 10^119000.

Examples

			338688 is in this sequence because:
- 338688 goes to a single digit in 7 steps: p(338688) = 27648, p(27648) = 2688, p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0.
- p(4478976) = p(13477889) = 338688, etc.
		

Crossrefs

Cf. A002473, A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root), A046516 (all numbers with mp of 7).
Cf. A350180, A350181, A350182, A350183, A350184, A350185, A350187 (numbers with mp 1 to 6 and 8 to 10 that are themselves 7-smooth numbers).

Programs

  • Mathematica
    mx=10^16;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}];
    Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==7&]  (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)

A050626 Product of digits of n is a nonzero square.

Original entry on oeis.org

1, 4, 9, 11, 14, 19, 22, 28, 33, 41, 44, 49, 55, 66, 77, 82, 88, 91, 94, 99, 111, 114, 119, 122, 128, 133, 141, 144, 149, 155, 166, 177, 182, 188, 191, 194, 199, 212, 218, 221, 224, 229, 236, 242, 248, 263, 281, 284, 289, 292, 298, 313, 326, 331, 334, 339, 343
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Programs

  • Magma
    [ n: n in [1..350] | s gt 0 and IsSquare(s) where s is &*Intseq(n,10) ];  // Bruno Berselli, May 26 2011
    
  • Mathematica
    Select[Range[500],DigitCount[#,10,0]==0&&IntegerQ[Sqrt[Times@@ IntegerDigits[ #]]]&] (* Harvey P. Dale, Jun 09 2020 *)
  • PARI
    is(n)=my(v=digits(n),pr=prod(i=1,#v,v[i]));pr&&issquare(pr) \\ Charles R Greathouse IV, May 19 2013

A053668 Product of digits of n^3.

Original entry on oeis.org

0, 1, 8, 14, 24, 10, 12, 36, 10, 126, 0, 9, 112, 126, 224, 315, 0, 108, 240, 2160, 0, 108, 0, 84, 192, 300, 1470, 1296, 180, 1728, 0, 1134, 2016, 2835, 0, 2240, 4320, 0, 2240, 1215, 0, 864, 0, 0, 1280, 90, 3402, 0, 0, 1512, 0, 180, 0, 12544, 3360, 3780, 1260, 1080, 90, 0
Offset: 0

Views

Author

Enoch Haga, Feb 17 2000

Keywords

Crossrefs

Cf. A007954.

Programs

  • Maple
    seq(convert(convert(n^3,base,10),`*`), n=0..100); # Robert Israel, Feb 03 2019
  • Mathematica
    Times@@IntegerDigits[#]&/@(Range[0,60]^3) (* Harvey P. Dale, Jul 15 2019 *)
  • PARI
    a(n) = my(d = digits(n^3)); prod(i=1, #d, d[i]); \\ Michel Marcus, Jun 06 2014

Formula

a(n) = A007954(n^3). - Michel Marcus, Jun 06 2014

A056770 Smallest number that is n times the product of its digits or 0 if impossible.

Original entry on oeis.org

1, 36, 15, 384, 175, 12, 735, 128, 135, 0, 11, 1296, 624, 224, 0, 0, 816, 216, 1197, 0, 315, 132, 115, 0, 0, 0, 2916, 1176, 3915, 0, 93744, 0, 51975, 78962688, 0, 82944, 1184, 0, 0, 0, 31488, 0, 0, 77616, 77175, 4416, 0, 12288, 1715, 0, 612
Offset: 1

Views

Author

Robert G. Wilson v, Aug 16 2000

Keywords

Examples

			a(4) = 384 because 4*(product of digits of 384) = 4*96 = 384, and no number smaller than 384 has this property.
		

Crossrefs

Programs

  • Mathematica
    Do[k = n; If[Mod[n, 10] == 0, Print[0]; Continue[]]; While[Apply[Times, RealDigits[k][[1]]]*n != k, k += n]; Print[k], {n, 1, 14}]
  • Python
    from itertools import count, combinations_with_replacement
    from math import prod
    def A056770(n):
        if not n%10: return 0
        for l in count(1):
            if 9**l*n < 10**(l-1): return 0
            c = 10**l
            for d in combinations_with_replacement(range(1,10),l):
                if sorted(str(a:=prod(d)*n)) == list(str(e) for e in d):
                    c = min(c,a)
            if c < 10**l:
                return c # Chai Wah Wu, May 09 2023

Extensions

a(15) onwards from David W. Wilson, Jan 20 2016

A062997 Numbers whose sum of digits is strictly greater than its product of digits.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 130, 131, 140, 141, 150, 151, 160, 161, 170
Offset: 1

Views

Author

Amarnath Murthy, Jun 27 2001

Keywords

Comments

Every multiple of 10 is a term.

Examples

			118 is a term as 1 + 1 + 8 = 10, 10 > 8 and 8 = 1 * 1 * 8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[170], (Plus @@ IntegerDigits[ # ]) > (Times @@ IntegerDigits[ # ]) &] (* Alonso del Arte, May 16 2005 *)
  • PARI
    isok(k)={my(d=digits(k)); vecsum(d) > vecprod(d)} \\ Harry J. Smith, Aug 15 2009

Extensions

Extended by Larry Reeves (larryr(AT)acm.org) and Henry Bottomley, Jun 29 2001
Previous Showing 81-90 of 315 results. Next