cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 117 results. Next

A090440 Generalized Stirling2 array (4,3).

Original entry on oeis.org

1, 24, 36, 12, 1, 1440, 5760, 6120, 2520, 456, 36, 1, 172800, 1339200, 2808000, 2420640, 1025280, 232920, 29400, 2040, 72, 1, 36288000, 471744000, 1643846400, 2381702400, 1745755200, 721224000, 178941600, 27624960, 2689920, 163800, 6000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 23 2003

Keywords

Comments

The row lengths for this array are [1,4,7,10,13,16,...] = A016777(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A090438 (4, 2)-Stirling2.
Cf. A070531 (row sums), A091028 (alternating row sums).

Programs

Formula

Recursion: a(n, k)=sum(binomial(3, p)*fallfac(n-1-p+k, 3-p)*a(n-1, k-p), p=0..3), n>=2, 3<=k<=3*n, a(1, 3)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle).
a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+j-1, 3), j=1..n), p=3..k), n>=1, 3<=k<=3*n, else 0. From eq. (12) of the Blasiak et al. reference with r=4, s=3.

A091748 Generalized Bell numbers B_{6,2}.

Original entry on oeis.org

1, 43, 5083, 1160113, 432168721, 238012552651, 181520958432283, 182989529196234433, 235492729726705299073, 376560458072018837889931, 732162019709408940671604091, 1700645336651586566571229542193
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A072019 ( B_{5, 2}).

Programs

  • Mathematica
    a[n_] := Sum[Product[FactorialPower[k+4*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n)=sum(A091746(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+4*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

A091749 Generalized Bell numbers B_{7,2}.

Original entry on oeis.org

1, 57, 9367, 3039037, 1631142633, 1306299636853, 1458563053824871, 2164056543968020185, 4116264432907357578961, 9762542731516508922640177, 28237035023990471230544779095, 97815632146487780258222172635029
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A091748 (B_{6, 2}).

Programs

  • Mathematica
    a[n_] := Sum[Product[FactorialPower[k+5*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Array[a, 12] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n)=sum(A091747(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+5*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=7, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

A097662 a(n) = A002720(n) - 1.

Original entry on oeis.org

0, 1, 6, 33, 208, 1545, 13326, 130921, 1441728, 17572113, 234662230, 3405357681, 53334454416, 896324308633, 16083557845278, 306827170866105, 6199668952527616, 132240988644215841, 2968971263911288998, 69974827707903049153, 1727194482044146637520, 44552237162692939114281
Offset: 0

Views

Author

Ross La Haye, Sep 20 2004

Keywords

Crossrefs

Main diagonal of A329655.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1) -1: n in [0..40]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    a := n -> hypergeom([-n, -n], [], 1) - 1:
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 11 2016
  • Mathematica
    Table[n!*LaguerreL[n,-1] -1, {n,0,40}] (* G. C. Greubel, Aug 11 2022 *)
  • SageMath
    [factorial(n)*laguerre(n, -1) -1 for n in (0..40)] # G. C. Greubel, Aug 11 2022

Formula

a(n) = Sum_{k=1..n} (n!^2 / k!*(n-k)!^2).
a(n) = Sum_{k=1..n} P(n, k)*C(n, k) where P(n,k), are the permutation coefficients A008279.
a(n) = n * A129833(n-1) for n>=1. - Peter Luschny, Oct 11 2016
From G. C. Greubel, Aug 11 2022: (Start)
E.g.f.: exp(x/(1-x))/(1-x) - exp(x).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = (exp(x) -1)*BesselI(0, 2*sqrt(x)). (End)

A121757 Triangle read by rows: multiply Pascal's triangle by 1,2,6,24,120,720,... = A000142.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 18, 24, 1, 8, 36, 96, 120, 1, 10, 60, 240, 600, 720, 1, 12, 90, 480, 1800, 4320, 5040, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880, 1, 18, 216, 2016, 15120, 90720, 423360, 1451520
Offset: 0

Views

Author

Alford Arnold, Aug 19 2006

Keywords

Comments

Row sums are 1,3,11,49,261,1631,... = A001339
a(n,k) = D(n+1,k+1) Array D in A253938 is part of a conjectured formula for F(n,p,r) that relates Dyck path peaks and returns. a(n,k) was discovered prior to array D. - Roger Ford, May 19 2016

Examples

			Row 6 is 1*1 5*2 10*6 10*24 5*120 1*720.
From _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
1,
1, 2,
1, 4,  6,
1, 6,  18,  24,
1, 8,  36,  96,   120,
1, 10, 60,  240,  600,  720,
1, 12, 90,  480,  1800, 4320,  5040,
1, 14, 126, 840,  4200, 15120, 35280,  40320,
1, 16, 168, 1344, 8400, 40320, 141120, 322560, 362880 etc.
(End)
		

Crossrefs

Cf. A007526 A000522, A005843 (2nd column), A028896 (3rd column).
Cf. A008279.
Cf. A008277, A132159 (mirrored).

Programs

  • Haskell
    a121757 n k = a121757_tabl !! n !! k
    a121757_row n = a121757_tabl !! n
    a121757_tabl = iterate
       (\xs -> zipWith (+) (xs ++ [0]) (zipWith (*) [1..] ([0] ++ xs))) [1]
    -- Reinhard Zumkeller, Mar 06 2014
  • Mathematica
    Flatten[Table[n!(k+1)/(n-k)!,{n,0,10},{k,0,n}]]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    A000142(n)={ return(n!) ; } A007318(n,k)={ return(binomial(n,k)) ; } A121757(n,k)={ return(A007318(n,k)*A000142(k+1)) ; } { for(n=0,12, for(k=0,n, print1(A121757(n,k),",") ; ); ) ; } \\ R. J. Mathar, Sep 02 2006
    

Formula

a(n,k) = A007318(n,k)*A000142(k+1), k=0,1,..,n, n=0,1,2,3... - R. J. Mathar, Sep 02 2006
a(n,k) = A008279(n,k) * (k+1). a(n,k) = n!*(k+1)/(n-k)!. - Franklin T. Adams-Watters, Sep 20 2006

A145361 Characteristic partition array for partitions with parts 1 and 2 only.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

Each partition of n, ordered like in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to 1 if the partition has parts 1 or 2 only and to 0 otherwise.
First member (K=1) in the family M31hat(-K) of partition number arrays.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
This array is array A144357 divided entrywise by the array M_3=M3(1)=A036040. Formally 'A144357/A036040'. E.g. a(4,3)= 1 = 3/3 = A144357(4,3)/A036040(4,3).
If M31hat(-1;n,k) is summed over those k numerating partitions with fixed number of parts m one obtains the unsigned triangle S1hat(-1):= A145362 .

Examples

			Triangle begins:
  [1];
  [1,1];
  [0,1,1];
  [0,0,1,1,1];
  [0,0,0,0,1,1,1];
  ...
a(4,3)= 1 = S1(-1;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A145363 (M31hat(-2)).

Formula

a(n,k) = product(S1(-1;j,1)^e(n,k,j),j=1..n) with S1(-1;n,1) = A008279(1,n-1) = [1,1,0,0,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.

A145373 Lower triangular array, called S1hat(-5), related to partition number array A145372.

Original entry on oeis.org

1, 5, 1, 20, 5, 1, 60, 45, 5, 1, 120, 160, 45, 5, 1, 120, 820, 285, 45, 5, 1, 0, 1920, 1320, 285, 45, 5, 1, 0, 6600, 5420, 1945, 285, 45, 5, 1, 0, 9600, 23600, 7920, 1945, 285, 45, 5, 1, 0, 21600, 66600, 41100, 11045, 1945, 285, 45, 5, 1, 0, 14400, 189600, 151600, 53600, 11045
Offset: 1

Views

Author

Wolfdieter Lang, Oct 17 2008

Keywords

Comments

If in the partition array M31hat(-5):=A145372 entries belonging to partitions with the same parts number m are summed one obtains this triangle of numbers S1hat(-5). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first column is [1,5,20,60,120,120,0,0,0,...]= A008279(5,n-1), n>=1.

Examples

			Triangle begins:
  [1];
  [5,1];
  [20,5,1];
  [60,45,5,1];
  [120,160,45,5,1];
  ...
		

Crossrefs

Cf. A145374 (row sums).

Formula

a(n,m) = sum(product(S1(-5;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S1(-5,n,1)= A008279(5,n-1) = [1,5,20,60,120,120,0,0,0,...], n>=1.

A349731 a(n) = -(-n)^n * FallingFactorial(1/n, n) for n >= 1 and a(0) = -1.

Original entry on oeis.org

-1, 1, 1, 10, 231, 9576, 623645, 58715280, 7547514975, 1270453824640, 271252029133449, 71635824470246400, 22929813173612997575, 8747686347650933760000, 3921812703436118765113125, 2041590849971133677650610176, 1221367737152989777782325269375, 832163138229382457228044554240000
Offset: 0

Views

Author

Peter Luschny, Dec 21 2021

Keywords

Crossrefs

The main diagonal of A349971 for n >= 1.
The Stirling set counterpart is A318183.

Programs

  • Magma
    [-1,1] cat [Round(n^(n-1)*Gamma((n^2-1)/n)/Gamma((n-1)/n)): n in [2..30]]; // G. C. Greubel, Feb 22 2022
  • Maple
    A349731 := n -> -add((-1)^(n-k)*Stirling1(n, n-k)*(-n)^k, k = 0..n):
    seq(A349731(n), n = 0..17);
  • Mathematica
    a[0] = -1; a[n_] := -(-n)^n * FactorialPower[1/n, n]; Array[a, 18, 0] (* Amiram Eldar, Dec 21 2021 *)
  • Python
    from sympy import ff
    from fractions import Fraction
    def A349731(n): return -1 if n == 0 else -(-n)**n*ff(Fraction(1,n),n) # Chai Wah Wu, Dec 21 2021
    
  • SageMath
    def a(n): return -(-n)^n*falling_factorial(1/n, n) if n > 0 else -1
    print([a(n) for n in (1..17)])
    

Formula

a(n) = -(-1)^n*Sum_{k=0..n}[n, n-k]*(-n)^k, where [n, k] denotes the Stirling cycle numbers A132393(n, k).

A072678 Generalized Bell numbers B_{4,2}.

Original entry on oeis.org

1, 21, 1045, 93289, 12975561, 2581284541, 693347907421, 241253367679185, 105394372192969489, 56410454014314490981, 36271084122927079387941, 27567930377271475039277881, 24435533594428382909107147225
Offset: 1

Views

Author

Karol A. Penson, Jul 01 2002

Keywords

Crossrefs

Cf. A090439 (alternating row sums of A090438).

Programs

  • Maple
    f:= n -> simplify((2*n)!*hypergeom([2*n+1], [3], 1)/(2*exp(1))):
    map(f, [$1..30]); # Robert Israel, May 23 2016
  • Mathematica
    a[n_] := n*(2n-1)!*Hypergeometric1F1[2-2n, 3, -1]; Array[a, 30] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) = (2*n)!*hypergeom([2*n+1], [3], 1)/(2*exp(1)), n=1, 2, ... Special values of the confluent hypergeometric function 1F1.
a(n) = sum(A090438(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+(j-1)*(4-2), 2), j=1..n), k=1..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=4, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
8*n*(2*n-1)*(2*n+1)*(n+1)^2*(n+3)*(n+2)*a(n)+(2*(n+1))*(8*n^3+32*n^2+42*n+13)*a(n+1)*(n+3)*(n+2)-(8*n^2+38*n+51)*(n+3)*(n+2)*a(n+2)+(n+3)*(n+2)*a(n+3) = 0. - Robert Israel, May 23 2016
a(n) = A052852(2*n-1). - Mark van Hoeij, Sep 05 2022

Extensions

Edited by Wolfdieter Lang, Dec 23 2003

A076014 Triangle in which m-th entry of n-th row is m^(n-1).

Original entry on oeis.org

1, 1, 2, 1, 4, 9, 1, 8, 27, 64, 1, 16, 81, 256, 625, 1, 32, 243, 1024, 3125, 7776, 1, 64, 729, 4096, 15625, 46656, 117649, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This becomes triangle A009998(n-1, m-1), n >= m >= 1, if the m-th column entries are divided by m^(m-1).
Row sums give A076015. The m-th column (without leading zeros) gives (m^(m-1)) powers of m, m >= 1.
T(n,m) is the number of functions f:[n-1]->[(n-1)m] such that f(x)=k*x for some positive integer k <= m. Since there exactly m choices for each of the (n-1) images under f, we obtain T(n,m) = m^(n-1). - Dennis P. Walsh, Feb 27 2013
T(n+1,m+1) = (m+1)^n is the number of partial functions from an n-element set to an m-element set, n >= m >= 0. - Mohammad K. Azarian, Jun 28 2021

Examples

			For example, T(3,2)=4 since there are exactly 4 functions f from {1,2} to {1,2,3,4} that satisfy f(x)=x or f(x)=2x. If we specify each function by the ordered pair (f(1),f(2)), the four functions are (1,2), (1,4), (2,2), and (2,4). - _Dennis P. Walsh_, Feb 27 2013
Triangle begins:
  1;
  1,   2;
  1,   4,    9;
  1,   8,   27,    64;
  1,  16,   81,   256,   625;
  1,  32,  243,  1024,  3125,   7776;
  1,  64,  729,  4096, 15625,  46656, 117649;
  1, 128, 2187, 16384, 78125, 279936, 823543, 2097152;
  ...
		

Crossrefs

Cf. A009998, A008279, A008277 (Stirling2).
Cf. A089072.

Programs

  • Maple
    seq(seq(m^(n-1),m=1..n),n=1..20); # Dennis P. Walsh, Feb 27 2013
  • Mathematica
    Table[m^(n-1),{n,10},{m,n}]//Flatten (* Harvey P. Dale, May 27 2017 *)

Formula

T(n, m) = m^(n-1), n >= m >= 1, otherwise 0.
G.f. for m-th column: (m^(m-1))(x^m)/(1-m*x), m >= 1.
a(n,m) = Sum_{p=1..m} Stirling2(n,p)*A008279(m-1, p-1), n >= m >= 1, otherwise 0.
Previous Showing 81-90 of 117 results. Next