A362608
Number of integer partitions of n having a unique mode.
Original entry on oeis.org
0, 1, 2, 2, 4, 5, 7, 11, 16, 21, 29, 43, 54, 78, 102, 131, 175, 233, 295, 389, 490, 623, 794, 1009, 1255, 1579, 1967, 2443, 3016, 3737, 4569, 5627, 6861, 8371, 10171, 12350, 14901, 18025, 21682, 26068, 31225, 37415, 44617, 53258, 63313, 75235, 89173, 105645
Offset: 0
The partition (3,3,2,1) has greatest multiplicity 2, and a unique part of multiplicity 2 (namely 3), so is counted under a(9).
The a(1) = 1 through a(7) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (111) (22) (221) (33) (322)
(211) (311) (222) (331)
(1111) (2111) (411) (511)
(11111) (3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
For parts instead of multiplicities we have
A000041(n-1), ranks
A102750.
These partitions have ranks
A356862.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
-
Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]==1&]],{n,0,30}]
-
seq(n) = my(A=O(x*x^n)); Vec(sum(m=1, n, sum(j=1, n\m, x^(j*m)*(1-x^j)/(1 - x^(j*m)), A)*prod(j=1, n\m, (1 - x^(j*m))/(1 - x^j) + A)/prod(j=n\m+1, n, 1 - x^j + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023
A126988
Triangle read by rows: T(n,k) = n/k if k is a divisor of n; T(n,k) = 0 if k is not a divisor of n (1 <= k <= n).
Original entry on oeis.org
1, 2, 1, 3, 0, 1, 4, 2, 0, 1, 5, 0, 0, 0, 1, 6, 3, 2, 0, 0, 1, 7, 0, 0, 0, 0, 0, 1, 8, 4, 0, 2, 0, 0, 0, 1, 9, 0, 3, 0, 0, 0, 0, 0, 1, 10, 5, 0, 0, 2, 0, 0, 0, 0, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1
First few rows of the triangle are:
1;
2, 1;
3, 0, 1;
4, 2, 0, 1;
5, 0, 0, 0, 1;
6, 3, 2, 0, 0, 1;
7, 0, 0, 0, 0, 0, 1;
8, 4, 0, 2, 0, 0, 0, 1;
9, 0, 3, 0, 0, 0, 0, 0, 1;
10, 5, 0, 0, 2, 0, 0, 0, 0, 1;
...
sigma(12) = A000203(n) = 28.
sigma(12) = 28, from 12th row = (12 + 6 + 4 + 3 + 2 + 1), deleting the zeros, from left to right.
For n = 6 the partitions of 6 into equal parts are [6], [3,3], [2,2,2], [1,1,1,1,1,1], so the number of k's are [6, 3, 2, 0, 0, 1] respectively, equaling the 6th row of triangle. - _Omar E. Pol_, Nov 25 2019
- David Wells, "Prime Numbers, the Most Mysterious Figures in Math", John Wiley & Sons, Inc, 2005, Appendix B.
-
a126988 n k = a126988_tabl !! (n-1) !! (k-1)
a126988_row n = a126988_tabl !! (n-1)
a126988_tabl = zipWith (zipWith (*)) a010766_tabl a051731_tabl
-- Reinhard Zumkeller, Jan 20 2014
-
[[(n mod k) eq 0 select n/k else 0: k in [1..n]]: n in [1..12]]; // G. C. Greubel, May 29 2019
-
A126988:=proc(n,k) if type(n/k, integer)=true then n/k else 0 fi end: for n from 1 to 12 do seq(A126988(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 17 2007
-
Table[If[Mod[n, m]==0, n/m, 0], {n,1,12}, {m,1,n}]//Flatten (* Roger L. Bagula, Sep 06 2008, simplified by Franklin T. Adams-Watters, Aug 24 2011 *)
-
{T(n,k) = if(n%k==0, n/k, 0)}; \\ G. C. Greubel, May 29 2019
-
def T(n, k):
if (n%k==0): return n/k
else: return 0
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 29 2019
A307683
Number of partitions of n having a non-integer median.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1
a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
Cf.
A000016,
A051293,
A067538,
A082550,
A240219,
A240850,
A316413,
A326567/
A326568,
A327475,
A359897,
A360005.
A359907
Number of strict integer partitions of n with integer median.
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 4, 2, 6, 4, 9, 6, 14, 10, 18, 16, 27, 23, 36, 34, 51, 49, 67, 68, 94, 95, 122, 129, 166, 174, 217, 233, 287, 308, 371, 405, 487, 528, 622, 683, 805, 880, 1024, 1127, 1305, 1435, 1648, 1818, 2086, 2295, 2611, 2882, 3273, 3606, 4076, 4496, 5069
Offset: 0
The a(1) = 1 through a(14) = 18 partitions (A..E = 10..14):
1 2 3 4 5 6 7 8 9 A B C D E
31 42 421 53 432 64 542 75 643 86
51 62 531 73 632 84 652 95
321 71 621 82 641 93 742 A4
431 91 731 A2 751 B3
521 532 821 B1 832 C2
541 543 841 D1
631 642 931 653
721 651 A21 743
732 6421 752
741 761
831 842
921 851
5421 932
941
A31
B21
7421
The median statistic is ranked by
A360005(n)/2.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Median[#]]&]],{n,0,30}]
A353837
Number of integer partitions of n with all distinct run-sums.
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 10, 14, 17, 28, 35, 49, 62, 85, 107, 149, 174, 238, 305, 384, 476, 614, 752, 950, 1148, 1451, 1763, 2205, 2654, 3259, 3966, 4807, 5773, 7039, 8404, 10129, 12140, 14528, 17288, 20668, 24505, 29062, 34437, 40704, 48059, 56748, 66577, 78228
Offset: 0
The a(0) = 1 through a(6) = 10 partitions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(1111) (221) (51)
(311) (222)
(2111) (321)
(11111) (411)
(2211)
(21111)
(111111)
For multiplicities instead of run-sums we have
A098859, ranked by
A130091.
A005811 counts runs in binary expansion.
A351014 counts distinct runs in standard compositions.
A353832 represents the operation of taking run-sums of a partition.
A353849 counts distinct run-sums in standard compositions.
Cf.
A000041,
A008284,
A047966,
A071625,
A073093,
A116608,
A175413,
A181819,
A333755,
A353848,
A353867.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Split[#]&]],{n,0,15}]
-
a353837 = lambda n: sum( abs(BipartiteGraph( Matrix(len(p), len(D:=list(set.union(*map(lambda t: set(divisors(t)),p)))), lambda i,j: p[i]%D[j]==0) ).matching_polynomial()[len(D)-len(p)]) for p in Partitions(n,max_slope=-1) ) # Max Alekseyev, Sep 11 2023
A236912
Number of partitions of n such that no part is a sum of two other parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 12, 14, 20, 25, 34, 40, 54, 64, 85, 98, 127, 149, 189, 219, 277, 316, 395, 456, 557, 638, 778, 889, 1070, 1226, 1461, 1667, 1978, 2250, 2645, 3019, 3521, 3997, 4652, 5267, 6093, 6909, 7943, 8982, 10291, 11609, 13251, 14947, 16984, 19104
Offset: 0
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 11 - 3 = 8.
From _Gus Wiseman_, Aug 09 2023: (Start)
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(3111) (421) (521)
(111111) (511) (611)
(2221) (2222)
(4111) (3311)
(31111) (5111)
(1111111) (41111)
(311111)
(11111111)
(End)
The (strict) version for linear combinations of parts is
A364350.
These partitions have ranks
A364461.
-
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,15}] (* Gus Wiseman, Aug 09 2023 *)
A237667
Number of partitions of n such that no part is a sum of two or more other parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 19, 29, 28, 41, 42, 61, 61, 87, 85, 120, 117, 160, 156, 224, 216, 288, 277, 380, 363, 483, 474, 622, 610, 783, 755, 994, 986, 1235, 1191, 1549, 1483, 1876, 1865, 2306, 2279, 2806, 2732, 3406, 3413, 4091, 4013, 4991, 4895, 5872
Offset: 0
For n = 6, the nonqualifiers are 123, 1113, 1122, 11112, leaving a(6) = 7.
From _Gus Wiseman_, Aug 09 2023: (Start)
The partition y = (5,3,1,1) has submultiset (3,1,1) with sum in y, so is not counted under a(10).
The partition y = (5,3,3,1) has no non-singleton submultiset with sum in y, so is counted under a(12).
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(111111) (421) (521)
(511) (611)
(2221) (2222)
(4111) (3311)
(1111111) (5111)
(11111111)
(End)
These partitions have ranks
A364531.
-
Map[Count[Map[MemberQ[#,Apply[Alternatives,Map[Apply[Plus,#]&, DeleteDuplicates[DeleteCases[Subsets[#],?(Length[#]<2&)]]]]]&, IntegerPartitions[#]],False]&,Range[20]] (* _Peter J. C. Moses, Feb 10 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]=={}&]],{n,0,15}] (* Gus Wiseman, Aug 09 2023 *)
A362614
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 11, 3, 1, 0, 16, 4, 2, 0, 21, 6, 3, 0, 29, 8, 4, 1, 0, 43, 7, 5, 1, 0, 54, 13, 8, 2, 0, 78, 12, 8, 3, 0, 102, 17, 11, 5, 0, 131, 26, 12, 6, 1, 0, 175, 29, 17, 9, 1, 0, 233, 33, 18, 11, 2, 0, 295, 47, 25
Offset: 0
Triangle begins:
1
0 1
0 2
0 2 1
0 4 1
0 5 2
0 7 3 1
0 11 3 1
0 16 4 2
0 21 6 3
0 29 8 4 1
0 43 7 5 1
0 54 13 8 2
0 78 12 8 3
0 102 17 11 5
0 131 26 12 6 1
0 175 29 17 9 1
Row n = 8 counts the following partitions:
(8) (53) (431)
(44) (62) (521)
(332) (71)
(422) (3311)
(611)
(2222)
(3221)
(4211)
(5111)
(22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
Removing columns 0 and 1 and taking sums gives
A362607, ranks
A362605.
This statistic (mode-count) is ranked by
A362611.
A008284 counts partitions by length.
A275870 counts collapsible partitions.
-
msi[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n],Length[msi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
A353864
Number of rucksack partitions of n: every consecutive constant subsequence has a different sum.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 25, 33, 39, 51, 65, 82, 101, 126, 154, 191, 232, 284, 343, 416, 496, 600, 716, 855, 1018, 1209, 1430, 1691, 1991, 2345, 2747, 3224, 3762, 4393, 5116, 5946, 6897, 7998, 9257, 10696, 12336, 14213, 16343, 18781, 21538, 24687, 28253, 32291, 36876, 42057
Offset: 0
The a(0) = 1 through a(7) = 11 partitions:
() (1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(1111) (221) (51) (61)
(311) (222) (322)
(11111) (321) (331)
(411) (421)
(111111) (511)
(2221)
(4111)
(1111111)
These partitions are ranked by
A353866.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by
A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.
-
msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Select[msubs[#],SameQ@@#&]&]],{n,0,30}]
A115720
Triangle T(n,k) is the number of partitions of n with Durfee square k.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 3, 0, 4, 1, 0, 5, 2, 0, 6, 5, 0, 7, 8, 0, 8, 14, 0, 9, 20, 1, 0, 10, 30, 2, 0, 11, 40, 5, 0, 12, 55, 10, 0, 13, 70, 18, 0, 14, 91, 30, 0, 15, 112, 49, 0, 16, 140, 74, 1, 0, 17, 168, 110, 2, 0, 18, 204, 158, 5, 0, 19, 240, 221, 10, 0, 20, 285, 302, 20, 0, 21, 330, 407
Offset: 0
Triangle starts:
1;
0, 1;
0, 2;
0, 3;
0, 4, 1;
0, 5, 2;
0, 6, 5;
0, 7, 8;
0, 8, 14;
0, 9, 20, 1;
0, 10, 30, 2;
From _Gus Wiseman_, Apr 12 2019: (Start)
Row n = 9 counts the following partitions:
(9) (54) (333)
(81) (63)
(711) (72)
(6111) (432)
(51111) (441)
(411111) (522)
(3111111) (531)
(21111111) (621)
(111111111) (3222)
(3321)
(4221)
(4311)
(5211)
(22221)
(32211)
(33111)
(42111)
(222111)
(321111)
(2211111)
(End)
-
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):
seq(seq(T(n, k), k=0..floor(sqrt(n))), n=0..30); # Alois P. Heinz, Apr 09 2012
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[ T[n, k], {n, 0, 30}, {k, 0, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)
durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
Table[Length[Select[IntegerPartitions[n],durf[#]==k&]],{n,0,10},{k,0,Sqrt[n]}] (* Gus Wiseman, Apr 12 2019 *)
Comments