A331329
a(n) = binomial(5*n, n)*hypergeom([-4*n, -n], [-5*n], -1).
Original entry on oeis.org
1, 9, 145, 2625, 50049, 982729, 19665841, 398796225, 8166636545, 168502295625, 3497529199185, 72949645000065, 1527671538372225, 32100078290806665, 676451066002195825, 14290577765009652865, 302557549412667613185, 6417968867896642617225, 136371773642235542394385
Offset: 0
-
a[n_] := Binomial[5 n, n] Hypergeometric2F1[-4 n, -n, -5 n, -1];
Array[a, 19, 0]
A008419
Crystal ball sequence for 9-dimensional cubic lattice.
Original entry on oeis.org
1, 19, 181, 1159, 5641, 22363, 75517, 224143, 598417, 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073, 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629, 3375210671, 4876601009, 6946419011, 9765268709
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
- Index entries for crystal ball sequences
-
CoefficientList[Series[(z + 1)^9/(z - 1)^10, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,19,181,1159,5641,22363,75517,224143,598417,1462563},40] (* Harvey P. Dale, Jul 25 2013 *)
A047666
Square array a(n,k) read by antidiagonals: a(n,1)=n, a(1,k)=k, a(n,k) = a(n-1,k-1) + a(n-1,k) + a(n,k-1).
Original entry on oeis.org
1, 2, 2, 3, 5, 3, 4, 10, 10, 4, 5, 17, 25, 17, 5, 6, 26, 52, 52, 26, 6, 7, 37, 95, 129, 95, 37, 7, 8, 50, 158, 276, 276, 158, 50, 8, 9, 65, 245, 529, 681, 529, 245, 65, 9, 10, 82, 360, 932, 1486, 1486, 932, 360, 82, 10, 11, 101, 507, 1537, 2947, 3653
Offset: 1
-
A047666 := proc(n,k) option remember; if n = 1 then k; elif k = 1 then n; else A047666(n-1,k-1)+A047666(n,k-1)+A047666(n-1,k); fi; end;
-
nmax = 11; a[1, k_] := k; a[n_, 1] := n; a[n_, k_] := a[n, k] = a[n-1, k-1] + a[n, k-1] + a[n-1, k]; Flatten[ Table[ a[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Feb 10 2012 *)
A047671
Square array a(n,k) read by antidiagonals: a(n,1)=1, a(1,k)=1, a(n,k) = 1 + a(n-1,k-1) + a(n-1,k) + a(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 19, 10, 1, 1, 13, 37, 37, 13, 1, 1, 16, 61, 94, 61, 16, 1, 1, 19, 91, 193, 193, 91, 19, 1, 1, 22, 127, 346, 481, 346, 127, 22, 1, 1, 25, 169, 565, 1021, 1021, 565, 169, 25, 1, 1, 28, 217, 862, 1933, 2524, 1933, 862
Offset: 1
-
A047671 := proc(n,k) option remember; if n = 1 then 1; elif k = 1 then 1; else 1+A047671(n-1,k-1)+A047671(n,k-1)+A047671(n-1,k); fi; end;
-
nmax = 12; a[, 1] = 1; a[1, ] = 1; a[n_ /; n > 1, k_ /; k > 1] := a[n, k] = 1 + a[n-1, k-1] + a[n-1, k] + a[n, k-1]; Flatten[ Table[ a[n-k , k], {n, 1, nmax}, {k, 1, n-1}]] (* Jean-François Alcover, Jul 19 2012 *)
A103136
Inverse of the Delannoy triangle.
Original entry on oeis.org
1, -1, 1, 2, -3, 1, -6, 10, -5, 1, 22, -38, 22, -7, 1, -90, 158, -98, 38, -9, 1, 394, -698, 450, -194, 58, -11, 1, -1806, 3218, -2126, 978, -334, 82, -13, 1, 8558, -15310, 10286, -4942, 1838, -526, 110, -15, 1, -41586, 74614, -50746, 25150, -9922, 3142, -778, 142, -17, 1, 206098, -370610, 254410, -129050
Offset: 0
From _Paul Barry_, Apr 29 2009: (Start)
Triangle begins
1;
-1, 1;
2, -3, 1;
-6, 10, -5, 1;
22, -38, 22, -7, 1;
-90, 158, -98, 38, -9, 1;
394, -698, 450, -194, 58, -11, 1;
Production matrix is
-1, 1,
1, -2, 1,
-1, 2, -2, 1,
1, -2, 2, -2, 1,
-1, 2, -2, 2, -2, 1
The unsigned triangle has production matrix
1, 1,
1, 2, 1,
1, 2, 2, 1,
1, 2, 2, 2, 1,
1, 2, 2, 2, 2, 1 (End)
-
def A103136(dim): # Returns a triangle with 'dim' rows
M = matrix([[simplify(hypergeometric([-n, n-k], [1], 2))
for n in range(k+1)] + [0]*(dim-k-1) for k in range(dim)])
return [row[:n+1] for n, row in enumerate(M.inverse())]
A103136(9) # Peter Luschny, Nov 16 2023
A128966
Triangle read by rows of coefficients of polynomials P[n](x) defined by P[0]=0, P[1]=x+1; for n >= 2, P[n]=(x+1)*P[n-1]+x*P[n-2].
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 10, 6, 1, 1, 8, 20, 20, 8, 1, 1, 10, 34, 50, 34, 10, 1, 1, 12, 52, 104, 104, 52, 12, 1, 1, 14, 74, 190, 258, 190, 74, 14, 1, 1, 16, 100, 316, 552, 552, 316, 100, 16, 1, 1, 18, 130, 490, 1058, 1362, 1058, 490, 130, 18, 1, 1, 20, 164
Offset: 0
Triangle begins:
0
1, 1
1, 2, 1
1, 4, 4, 1
1, 6, 10, 6, 1
1, 8, 20, 20, 8, 1
1, 10, 34, 50, 34, 10, 1
1, 12, 52, 104, 104, 52, 12, 1
1, 14, 74, 190, 258, 190, 74, 14, 1
1, 16, 100, 316, 552, 552, 316, 100, 16, 1
-
a128966 n k = a128966_tabl !! n !! k
a128966_row n = a128966_tabl !! n
a128966_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([0], [1, 1])
-- Reinhard Zumkeller, Jul 20 2013
-
P[0]:=0;
P[1]:=x+1;
for n from 2 to 14 do
P[n]:=expand((x+1)*P[n-1]+x*P[n-2]);
lprint(P[n]);
lprint(seriestolist(series(P[n],x,200)));
od:
-
t[n_, k_] := 2^(1-n)*Binomial[n, k]*Sum[Binomial[n, 2*m+1]*HypergeometricPFQ[{-k, -m, k-n}, {1/2-n/2, -n/2}, -1], {m, 0, (n-1)/2}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Max Alekseyev *)
-
{ T(n,k) = sum(m=0,(n-1)\2, binomial(n,2*m+1) * sum(j=0,m, binomial(m,j) * binomial(n-2*j,k-j) * 2^(2*j+1-n) ) ) } \\ Max Alekseyev, Mar 10 2008
A143411
Square array, read by antidiagonals: form the Euler-Seidel matrix for the sequence {2^k*k!} and then divide column k by 2^k*k!.
Original entry on oeis.org
1, 3, 1, 13, 5, 1, 79, 33, 7, 1, 633, 277, 61, 9, 1, 6331, 2849, 643, 97, 11, 1, 75973, 34821, 7993, 1225, 141, 13, 1, 1063623, 493825, 114751, 17793, 2071, 193, 15, 1, 17017969, 7977173, 1870837, 292681, 34361, 3229, 253, 17, 1
Offset: 0
The Euler-Seidel matrix for the sequence {2^k*k!} begins
========================================
n\k| 0 1 2 3 4 5
========================================
0 | 1 2 8 48 384 3840
1 | 3 10 56 432 4224
2 | 13 66 488 4656
3 | 79 554 5144
4 | 633 5698
5 | 6331
...
.
Dividing the k-th column by 2^k*k! gives
========================================
n\k| 0 1 2 3 4 5
========================================
0 | 1 1 1 1 1 1
1 | 3 5 7 9 11
2 | 13 33 61 97
3 | 79 277 643
4 | 633 2849
5 | 6331
...
-
A:= func< n,k | (&+[Binomial(n,j)*Factorial(k+j)*2^j/Factorial(k): j in [0..n]]) >; // Array
A143411:= func< n,k | A(n-k,k) >; // antidiagonal triangle
[A143411(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
-
with combinat: T := (n, k) -> 1/k!*add(2^j*binomial(n,j)*(k+j)!, j = 0..n): for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
-
A[n_, k_]:= (1/k!)*Sum[Binomial[n,j]*(k+j)!*2^j, {j,0,n}]; (* array *)
A143411[n_, k_]:= A[n-k,k]; (* antidiagonals *)
Table[A143411[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 05 2023 *)
-
def A(n,k): return sum(binomial(n,j)*factorial(j+k)*2^j/factorial(k) for j in range(n+1)) # array
def A143411(n,k): return A(n-k,k) # antidiagonal triangle
flatten([[A143411(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023
A180668
a(n) = a(n-1)+a(n-2)+a(n-3)+4*n-8 with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 5, 14, 32, 67, 133, 256, 484, 905, 1681, 3110, 5740, 10579, 19481, 35856, 65976, 121377, 223277, 410702, 755432, 1389491, 2555709, 4700720, 8646012, 15902537, 29249369, 53798022, 98950036, 181997539, 334745713
Offset: 0
-
nmax:=31: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*n-8 od: seq(a(n),n=0..nmax);
-
LinearRecurrence[{3,-2,0,-1,1},{0,0,1,5,14},40] (* Harvey P. Dale, Dec 15 2023 *)
A180669
a(n) = a(n-1)+a(n-2)+a(n-3)+4*n^2-16*n+18 with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 7, 26, 72, 171, 371, 760, 1500, 2889, 5475, 10266, 19116, 35435, 65495, 120832, 222664, 410017, 754671, 1388650, 2554784, 4699707, 8644907, 15901336, 29248068, 53796617, 98948523, 181995914, 334743972, 615691547
Offset: 0
-
nmax:=30: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+4*(n-2)^2+2 od: seq(a(n),n=0..nmax);
-
nxt[{n_,a_,b_,c_}]:={n+1,b,c,a+b+c+4n(n-2)+6}; NestList[nxt,{2,0,0,1},30][[;;,2]] (* or *) LinearRecurrence[{4,-5,2,-1,2,-1},{0,0,1,7,26,72},40] (* Harvey P. Dale, Jul 13 2024 *)
A180670
a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 9, 42, 140, 383, 925, 2056, 4316, 8705, 17069, 32810, 62192, 116743, 217673, 404000, 747496, 1380177, 2544865, 4688186, 8631620, 15886111, 29230725, 53776968, 98926372, 181971057, 334716197, 615660634, 1132400520
Offset: 0
-
nmax:=29: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 od: seq(a(n),n=0..nmax);
-
RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+(8n^3-48n^2+112n-96)/3},a,{n,30}] (* or *) LinearRecurrence[{5,-9,7,-3,3,-3,1},{0,0,1,9,42,140,383},30] (* Harvey P. Dale, Dec 04 2019 *)
Comments