A049410 A triangle of numbers related to triangle A049325.
1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
Offset: 1
Examples
Triangle begins: {1}; {3,1}; {6,9,1}; {6,51,18,1}; ... E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Crossrefs
Row sums give A049426.
Programs
-
Mathematica
rows = 10; t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; M = Inverse[Array[T, {rows, rows}]] // Abs; A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
Sage
# uses[inverse_bell_transform from A265605] # Adds a column 1,0,0,0,... at the left side of the triangle. multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1)) inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015
Formula
a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
A059115 Expansion of e.g.f.: ((1-x)/(1-2*x))*exp(x/(1-x)).
1, 2, 9, 58, 485, 4986, 60877, 861554, 13878153, 250854130, 5030058161, 110837000682, 2662669300909, 69270266115818, 1940260799150325, 58220372514830626, 1863293173842259217, 63356877145370671074
Offset: 0
Comments
L'(n,i) are unsigned Lah numbers (Cf. A008297): L'(n,i) = (n!/i!)*binomial(n-1,i-1) for i >= 1, L'(0,0) = 1, L'(n,0) = 0 for n > 0.
Examples
(1-x)/(1-2*x)*exp(x/(1-x)) = 1 + 2*x + 9/2*x^2 + 29/3*x^3 + 485/24*x^4 + 831/20*x^5 + ...
Links
Programs
-
Magma
[Factorial(n)*(&+[Evaluate(LaguerrePolynomial(n-k, k-1), -1) : k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 23 2021
-
Maple
s := series((1-x)/(1-2*x)*exp(x/(1-x)), x, 21): for i from 0 to 20 do printf(`%d,`,i!*coeff(s,x,i)) od:
-
Mathematica
With[{nn=20},CoefficientList[Series[(1-x)/(1-2x) Exp[x/(1-x)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 18 2020 *) Table[n!*Sum[LaguerreL[n-k, k-1, -1], {k,0,n}], {n,0,30}] (* G. C. Greubel, Feb 23 2021 *)
-
PARI
{a(n)=if(n<0, 0, n!*polcoeff( (1-x)/(1-2*x)*exp(x/(1-x)+x*O(x^n)), n))} /* Michael Somos, Aug 03 2006 */
-
PARI
{a(n)=local(A); if(n<0,0, n++; A=vector(n); A[n]=1; for(k=1,n-1, A[n-k]=1; if(k>1, A[n-k+1]=A[n-k+2]); for(i=n-k+1,n, A[i]=A[i-1]+k*A[i])); A[n])} /* Michael Somos, Aug 03 2006 */
-
PARI
a(n) = n!*sum(k=0, n, pollaguerre(n-k, k-1, -1)); \\ Michel Marcus, Feb 23 2021
-
Sage
[factorial(n)*sum( gen_laguerre(n-k, k-1, -1) for k in (0..n) ) for n in (0..30)] # G. C. Greubel, Feb 23 2021
Formula
Sum_{m=0..n} Sum_{i=0..n} L'(n, i)*Product_{j=1..m} (i-j+1).
Given g.f. A(x), then g.f. A000522 = A(x/(1+x)). - Michael Somos, Aug 03 2006
a(n) = n!*Sum_{k=0..n} LaguerreL(n-k, k-1, -1). - G. C. Greubel, Feb 23 2021
a(n) ~ sqrt(Pi) * 2^(n - 1/2) * n^(n + 1/2) / exp(n-1). - Vaclav Kotesovec, Feb 23 2021
Extensions
Definition clarified by Harvey P. Dale, Jul 18 2020
A134146 Triangle of numbers obtained from the partition array A134145.
1, 3, 1, 15, 3, 1, 105, 24, 3, 1, 945, 150, 24, 3, 1, 10395, 1485, 177, 24, 3, 1, 135135, 14805, 1620, 177, 24, 3, 1, 2027025, 191520, 16425, 1701, 177, 24, 3, 1, 34459425, 2687580, 208125, 16830, 1701, 177, 24, 3, 1, 654729075, 44552025, 2880360, 212985
Offset: 1
Comments
Examples
[1]; [3,1]; [15,3,1]; [105,24,3,1]; [945,150,24,3,1];...
Links
- W. Lang, First 10 rows and more.
Crossrefs
A134275 Triangle of numbers obtained from the partition array A134274.
1, 5, 1, 45, 5, 1, 585, 70, 5, 1, 9945, 810, 70, 5, 1, 208845, 14895, 935, 70, 5, 1, 5221125, 284895, 16020, 935, 70, 5, 1, 151412625, 7055100, 309645, 16645, 935, 70, 5, 1, 4996616625, 192734100, 7526475, 315270, 16645, 935, 70, 5, 1, 184874815125
Offset: 1
Comments
Examples
Triangle begins: [1]; [5,1]; [45,5,1]; [585,70,5,1]; [9945,810,70,5,1]; ...
Links
- Wolfdieter Lang, First 10 rows and more.
Formula
a(n,m) = sum(product(S2(5;j,1)^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. S2(5;j,1)= A007696(j) = A049029(j,1) = (4*j-3)(!^4), (quadruple- or 4-factorials).
A176013 Triangle, read by rows, T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
-1, 2, 1, -6, -9, -1, 24, 72, 24, 1, -120, -600, -400, -50, -1, 720, 5400, 6000, 1500, 90, 1, -5040, -52920, -88200, -36750, -4410, -147, -1, 40320, 564480, 1317120, 823200, 164640, 10976, 224, 1, -362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1
Offset: 1
Comments
Row sums are: -1, 3, -16, 121, -1171, 13711, -187468, 2920961, -50948677, 981458011, ...
Examples
Triangle begins as: -1; 2, 1; -6, -9, -1; 24, 72, 24, 1; -120, -600, -400, -50, -1; 720, 5400, 6000, 1500, 90, 1; -5040, -52920, -88200, -36750, -4410, -147, -1; 40320, 564480, 1317120, 823200, 164640, 10976, 224, 1; -362880, -6531840, -20321280, -17781120, -5334336, -592704, -24192, -324, -1;
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Crossrefs
Cf. A008297.
Programs
-
Magma
[(-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 08 2021
-
Mathematica
T[n_, k_] = (-1)^n*n!/(k*k!)*Binomial[n-1, k-1]*Binomial[n, k-1]; Table[T[n, k], {n,12}, {k,n}]//Flatten
-
Sage
flatten([[(-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 08 2021
Formula
T(n, k) = (-1)^n * n!/(k*k!) * binomial(n-1, k-1) * binomial(n, k-1).
T(n, k) = binomial(n+1, k) * A008297(n, k)/(n+1). - G. C. Greubel, Feb 08 2021
Extensions
Edited by G. C. Greubel, Feb 08 2021
A048786 Triangle of coefficients of certain exponential convolution polynomials.
1, 8, 1, 96, 24, 1, 1536, 576, 48, 1, 30720, 15360, 1920, 80, 1, 737280, 460800, 76800, 4800, 120, 1, 20643840, 15482880, 3225600, 268800, 10080, 168, 1, 660602880, 578027520, 144506880, 15052800, 752640, 18816, 224, 1
Offset: 1
Comments
i) p(n,x) := sum(a(n,m)*x^m,m=1..n), p(0,x) := 1, are monic polynomials satisfying p(n,x+y)= sum(binomial(n,k)*p(k,x)*p(n-k,y),k=0..n), (exponential convolution polynomials). ii) In the terminology of the umbral calculus (see reference) p(n,x) are called associated to f(t)= t/(1+4*t). iii) a(n,1)= A034177(n).
Also the Bell transform of A034177. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Also the fourth power of the unsigned Lah triangular matrix A105278. - Shuhei Tsujie, May 18 2019
Also the number of k-dimensional flats of the extended Shi arrangement of dimension n consisting of hyperplanes x_i - x_j = d (1 <= i < j <= n, -3 <= d <= 4). - Shuhei Tsujie, May 18 2019
Examples
Triangle begins: 1; 8, 1; 96, 24, 1; 1536, 576, 48, 1; 30720, 15360, 1920, 80, 1; ...
References
- S. Roman, The Umbral Calculus, Academic Press, New York, 1984
Links
- N. Nakashima and S. Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> 4^n*(n+1)!, 9); # Peter Luschny, Jan 28 2016
-
Mathematica
rows = 8; t = Table[4^n*(n+1)!, {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
Formula
Extensions
T(8,4) corrected by Jean-François Alcover, Jun 22 2018
A059114 Triangle T(n,m)= Sum_{i=0..n} L'(n,i)*Product_{j=1..m} (i-j+1), read by rows.
1, 1, 1, 3, 4, 2, 13, 21, 18, 6, 73, 136, 156, 96, 24, 501, 1045, 1460, 1260, 600, 120, 4051, 9276, 15030, 16320, 11160, 4320, 720, 37633, 93289, 170142, 219450, 192360, 108360, 35280, 5040, 394353, 1047376, 2107448, 3116736, 3294480, 2405760, 1149120, 322560, 40320
Offset: 0
Comments
L'(n,i) are unsigned Lah numbers (Cf. A008297): L'(n,i) = (n!/i!)*binomial(n-1,i-1) for i >= 1, L'(0,0) = 1, L'(n,0) = 0 for n > 0.
Examples
Triangle begins as: 1; 1, 1; 3, 4, 2; 13, 21, 18, 6; 73, 136, 156, 96, 24; 501, 1045, 1460, 1260, 600, 120; ...; E.g.f. for T(n, 2) = (x/(1-x))^2*e^(x/(x-1)) = x^2 + 3*x^3 + 13/2*x^4 + 73/6*x^5 + 167/8*x^6 + 4051/120*x^7 + ...
Links
Crossrefs
Programs
-
Magma
[Factorial(n)*Evaluate(LaguerrePolynomial(n-k, k-1), -1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 23 2021
-
Mathematica
Table[n!*LaguerreL[n-k, k-1, -1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 23 2021 *)
-
PARI
T(n, k) = n! * pollaguerre(n-k, k-1, -1); \\ Michel Marcus, Feb 23 2021
-
Sage
flatten([[factorial(n)*gen_laguerre(n-k, k-1, -1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 23 2021
Formula
E.g.f. for T(n, k) = (x/(1-x))^k * exp(x/(x-1)).
T(n, k)= Sum_{i=0..n} L'(n,i) * ( Product_{j=1..k} (i-j+1) ).
T(n, 0) = A000262(n).
T(n, 1) = A052852(n).
From G. C. Greubel, Feb 23 2021: (Start)
T(n, k) = n! * k! * Sum_{j=0..n} binomial(j, k)*binomial(n-1, j-1)/j!.
T(n, k) = n! * Laguerre(n-k, k-1, -1).
T(n, k) = n!*binomial(n-1, k-1)*Hypergeometric1F1([k-n], [k], -1) with T(n, 0) = Hypergeometric2F0([1-n, -n], [], 1). (End)
A111597 Lah numbers: a(n) = n!*binomial(n-1,6)/7!.
1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 779155977600, 20777492736000, 565147802419200, 15721384321843200, 448059453172531200, 13097122477350912000, 392913674320527360000, 12101741169072242688000
Offset: 7
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
Links
- G. C. Greubel, Table of n, a(n) for n = 7..440
Crossrefs
Programs
-
Magma
[Factorial(n-7)*Binomial(n, 7)*Binomial(n-1, 6): n in [7..30]]; // G. C. Greubel, May 10 2021
-
Mathematica
k = 7; a[n_] := n!*Binomial[n-1, k-1]/k!; Table[a[n], {n, k, 22}] (* Jean-François Alcover, Jul 09 2013 *)
-
Sage
[factorial(n-7)*binomial(n, 7)*binomial(n-1, 6) for n in (7..30)] # G. C. Greubel, May 10 2021
Formula
E.g.f.: ((x/(1-x))^7)/7!.
a(n) = (n!/7!)*binomial(n-1, 7-1).
If we define f(n,i,x) = Sum_{k=i..n} (Sum_{j=i..k} (binomial(k,j)*Stirling1(n,k)* Stirling2(j,i)*x^(k-j) ) ) then a(n+1) = (-1)^n*f(n,6,-8), (n>=6). - Milan Janjic, Mar 01 2009
From Amiram Eldar, May 02 2022: (Start)
Sum_{n>=7} 1/a(n) = 6342*(Ei(1) - gamma) - 8988*e + 80374/5, where Ei(1) = A091725, gamma = A001620, and e = A001113.
Sum_{n>=7} (-1)^(n+1)/a(n) = 170142*(gamma - Ei(-1)) - 101640/e - 490714/5, where Ei(-1) = -A099285. (End)
A134141 Generalized unsigned Stirling1 triangle, S1p(7).
1, 7, 1, 56, 21, 1, 504, 371, 42, 1, 5040, 6440, 1295, 70, 1, 55440, 114520, 36225, 3325, 105, 1, 665280, 2116800, 983920, 135975, 7105, 147, 1, 8648640, 40884480, 26714800, 5199145, 398860, 13426, 196, 1, 121080960, 826338240, 735469280
Offset: 1
Comments
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A092082(n, m) =: S2(7; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m, m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+6 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 05 2007
A triangle of numbers related to triangle A132166.
a(n,1)= A001730(n,5), n>=1. a(n,m)=: S1p(7; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n, m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n, m) (unsigned Lah numbers). S1p(3; n,m)= A046089(n,m), S1p(4; n,m)= A049352, S1p(5; n,m)= A049353(n,m), S1p(6; n,m)= A049374(n, m).
The Bell transform of factorial(n+6)/factorial(6). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
Examples
{1}; {7,1}; {56,21,1}; {504,371,42,1}; ... E.g. Row polynomial E(3,x)=56*x+21*x^2+x^3. a(4,2)= 371 = 4*(7*8)+3*(7*7) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*7*8)=56 colored versions, e.g., ((1c1),(2c1,3c7,4c5)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 7 colors, c1..c7, can be chosen and the vertex labeled 4 with j=2 can come in 8 colors, e.g., c1..c8. Therefore there are 4*((1)*(1*7*8))=224 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*7)*(1*7))=147 such forests, e.g. ((1c1,3c4)(2c1,4c7)) or ((1c1,3c6)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 05 2007
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- W. Lang, First ten rows.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (n+6)!/6!, 9); # Peter Luschny, Jan 27 2016
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (6*m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 39]] (* _Jean-François Alcover, Jun 01 2011, after formula *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[(# + 6)!/6! &, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: factorial(n+6)/factorial(6), 10) # Peter Luschny, Jan 18 2016
Formula
a(n, m) = n!*A132166(n, m)/(m!*6^(n-m)); a(n, m) = (6*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
A134280 Triangle of numbers obtained from the partition array A134279.
1, 6, 1, 66, 6, 1, 1056, 102, 6, 1, 22176, 1452, 102, 6, 1, 576576, 32868, 1668, 102, 6, 1, 17873856, 779328, 35244, 1668, 102, 6, 1, 643458816, 23912064, 843480, 36540, 1668, 102, 6, 1, 26381811456, 812173824, 25416072, 857736, 36540, 1668, 102, 6, 1
Offset: 1
Comments
Examples
[1]; [6,1]; [66,6,1]; [1056,102,6,1]; [22176,1452,102,6,1]; ...
Links
- W. Lang, First 10 rows and more.
Comments