cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A166061 19-rough numbers: positive integers that have no prime factors less than 19.

Original entry on oeis.org

1, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Michael B. Porter, Oct 05 2009

Keywords

Comments

Or, positive integers relatively prime to 510510 = 2*3*5*7*11*13*17.

Examples

			437 = 19 * 23 is in the sequence since the two prime factors, 19 and 23, are not less than 19.
		

Crossrefs

Programs

Formula

a(n) = k*n + O(1) where k = 17017/3072 = 5.539388.... In particular, k*n - 31 < a(n) < k*n + 25. - Charles R Greathouse IV, Sep 24 2018

A166063 23-rough numbers: positive integers that have no prime factors less than 23.

Original entry on oeis.org

1, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499
Offset: 1

Views

Author

Michael B. Porter, Oct 05 2009

Keywords

Comments

Or, positive integers relatively prime to 9699690 = 2*3*5*7*11*13*17*19.
First composite term is 529 = 23^2.

Examples

			667 = 23 * 29 is in the sequence since the two prime factors, 23 and 29, are not less than 23.
		

Crossrefs

Cf. A332797 (subsequence).

Programs

  • Maple
    A166063 := proc(n)
        option remember;
        local a;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                numtheory[factorset](a) ;
                if min(op(%)) >= 23 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A166063(n),n=1..80) ; # R. J. Mathar, Nov 05 2024
  • Mathematica
    Select[Range[500],FactorInteger[#][[1,1]]>22&] (* Harvey P. Dale, Nov 22 2010 *)
  • PARI
    isA166063(n) = gcd(n,9699690)==1 \\ Michael B. Porter, Oct 10 2009

Formula

a(n) = k*n + O(1) where k = 323323/55296 = 5.8471.... In particular, k*n - 51 < a(n) < k*n + 45. - Charles R Greathouse IV, Sep 21 2018
A166061 SETMINUS A332798 - R. J. Mathar, Nov 05 2024

Extensions

Additional terms provided provided by Harvey P. Dale, Nov 22 2010

A038511 Composite numbers with smallest prime factor >= 11.

Original entry on oeis.org

121, 143, 169, 187, 209, 221, 247, 253, 289, 299, 319, 323, 341, 361, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 529, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703, 713, 731, 737, 767, 779, 781, 793, 799, 803, 817, 841, 851
Offset: 1

Views

Author

Keywords

Comments

Composite n such that n^6 is congruent to {1, 169} mod 210. All primes > 7 satisfy this condition. - Gary Detlefs, Dec 09 2012

Crossrefs

Cf. A008364.

Programs

  • GAP
    Filtered([11..1000],n->(PowerMod(n,6,210)=1 or PowerMod(n,6,210)=169) and not IsPrime(n)); # Muniru A Asiru, Nov 24 2018
  • Maple
    for n from 1 to 1000 do if (n^6 mod 210 = 1 or n^6 mod 210 = 169) and not isprime(n) then print(n) fi od; # Gary Detlefs, Dec 09 2012
  • Mathematica
    Select[Range[1000], Not[PrimeQ[#]] && FactorInteger[#][[1, 1]] > 7 &] (* Alonso del Arte, Dec 09 2012 *)
  • PARI
    is(n)=gcd(210,n)==1 && !isprime(n) \\ Charles R Greathouse IV, Dec 10 2012
    

Formula

a(n) ~ 4.375n. - Charles R Greathouse IV, Dec 10 2012

A270298 Numbers which are representable as a sum of eight but no fewer consecutive nonnegative integers.

Original entry on oeis.org

44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 484, 508, 524, 548, 556, 572, 596, 604, 628, 652, 668, 676, 692, 716, 724, 748, 764, 772, 788, 796, 836, 844, 884, 892, 908, 916, 932
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 11 + 12 + 13 (not in sequence);
44 = 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
52 = 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10;
68 = 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12.
		

Crossrefs

Formula

A163169(a(n)) = 8. - Ray Chandler, Mar 22 2016
a(n) = 4*A008364(n+1). - Hugo Pfoertner, Feb 04 2021

A078859 Least positive residues (mod 210) representing those residue classes which can be the lesser of twin prime pairs (A001359).

Original entry on oeis.org

3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 167, 179, 191, 197, 209
Offset: 1

Views

Author

Labos Elemer, Dec 13 2002

Keywords

Crossrefs

Programs

  • Mathematica
    With[{n = 4}, Function[P, Join[Select[Prime@ Range@ n, NextPrime@ # == # + 2 &], Select[Partition[Select[Range[P + 1], CoprimeQ[#, P] &], 2, 1], Differences@ # == {2} &][[All, 1]]]]@ Product[Prime@ i, {i, n}]] (* Michael De Vlieger, May 15 2017 *)

Formula

Intersection[RRS(210), 2+RRS{210)]-2 and {3, 5}. RRS(210)=reduced residue system of 210=first 48=phi(210) terms of A008364; two additional term 3 and 5 are singular cases; 210k+r generates complete A001359 with suitable k and r taken from these 15+2 numbers.

A092695 Number of positive integers less than or equal to n which are not divisible by the primes 2,3,5,7.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 0

Views

Author

Michael Somos, Mar 04 2004

Keywords

Comments

This sequence is a special case of the following: Take different primes p_1, p_2,...,p_k. For a nonempty subset I of {1,2,...,k} denote by |I| the number of its elements. For a positive integer n denote A(n,I) = floor(n/Product_{i in I} p_i). Then the number of positive integers m <= n such that m is divisible by none of p_1,p_2,...,p_k is equal to n + Sum_{} (-1)^(|I|)*A(n,I), where I runs over all nonempty subsets of {1,2,...,k}. - Milan Janjic, Apr 23 2007

Examples

			x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + 2*x^11 + ...
		

References

  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 62.

Crossrefs

Programs

  • Haskell
    a092695 n = a092695_list !! n
    a092695_list = scanl (+) 0 $
                   map (fromEnum . (> 7)) (8 : tail a020639_list)
    -- Reinhard Zumkeller, Mar 26 2012
  • Mathematica
    Accumulate @ Table[Boole @ CoprimeQ[n, 210], {n, 0, 100}] (* Amiram Eldar, Dec 06 2020 *)
  • PARI
    {a(n) = n - n\2 - n\3 - n\5 - n\7 + n\6 + n\10 + n\14 + n\15 + n\21 - n\30 + n\35 - n\42 - n\70 - n\105 + n\210}
    
  • PARI
    {a(n) = if( n<0, -a(-1 - n), sum( k=0, n, 1==gcd( k, 210)))}
    

Formula

G.f.: (x * P172 * P36) / (e(1) * e(210)) where e(n) = 1 - x^n, P36 = e(16) * e(20) * e(24) / (e(6) * e(8) * e(10)) is a polynomial of degree 36 and P172 is a polynomial of degree 172.
a(n + 210) = a(n) + 48.
a(n) = -a(-1 - n) for n < 0.
a(n) ~ (8/35)*n. - Amiram Eldar, Dec 06 2020

A322273 Smallest multiplication factors f, prime or 1, for all b (mod 840), coprime to 840 (= 4*7#), so that b*f is a nonzero square mod 8, mod 3, mod 5, and mod 7.

Original entry on oeis.org

1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 43, 71, 73, 79, 83, 41, 73, 101, 103, 107, 109, 113, 1, 127, 59, 113, 19, 47, 29, 79, 13, 43, 47, 1, 173, 11, 61, 283, 71, 193, 53, 31, 41, 211, 29, 103, 83, 61, 113, 71, 241, 127, 59, 37, 17, 23
Offset: 1

Views

Author

Hans Ruegg, Dec 01 2018

Keywords

Comments

See sequence A322269 for further explanations. This sequence is related to A322269(4).
The sequence is periodic, repeating itself after phi(840) = 192 terms. Its largest term is 311, which is A322269(4). In order to satisfy the conditions, both f and b must be coprime to 840. Otherwise, the product would be zero mod a prime <= 7.
The b(n) corresponding to each a(n) is A008364(n).
The first 15 terms are trivial: f=b, and then the product b*f naturally is a square modulo everything.

Examples

			The 16th number coprime to 840 is 67. a(16) is 43, because 43 is the smallest prime by which we can multiply 67, so that the product (67*43 = 2881) is a square mod 8, mod 2, mod 3, mod 5, and mod 7.
		

Crossrefs

Programs

  • PARI
    QresCode(n, nPrimes) = {
      code = bitand(n,7)>>1;
      for (j=2, nPrimes,
        x = Mod(n,prime(j));
        if (issquare(x), code += (1<A322271, sequence(3) returns A322272, ... sequence(6) returns A322275.

A080672 Numbers having divisors 2 or 3 or 5 or 7.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

A020639(a(n)) <= 7; A210679(a(n)) > 0. - Reinhard Zumkeller, Apr 02 2012

Crossrefs

Cf. A020639, A008364 (complement).
Subsequences: A002473, A343597.

Programs

  • Haskell
    a080672 n = a080672_list !! (n-1)
    a080672_list = filter ((<= 7) . a020639) [2..]
    -- Reinhard Zumkeller, Apr 02 2012
  • Mathematica
    Select[Range[100],Length[Intersection[Divisors[#],{2,3,5,7}]]>0&] (* Harvey P. Dale, Apr 03 2024 *)
  • PARI
    div2357(n)= for(x=1,n, if(gcd(x,210)<>1,print1(x" ")) )
    
  • PARI
    is(n)=gcd(n,210)>1 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

From Charles R Greathouse IV, Sep 14 2015: (Start)
a(n) = 35n/27 + O(1).
For n > 162, a(n) = a(n-162) + 210. [Corrected by Peter Munn, Apr 22 2021]
(End)
For n < 162, a(n) = 210 - a(162-n). - Peter Munn, Apr 22 2021

Extensions

Offset fixed by Reinhard Zumkeller, Apr 02 2012

A210679 Number of distinct prime factors <= 7 of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 0, 2, 2, 1, 0, 2, 1, 1, 1, 2, 0, 3, 0, 1, 1, 1, 2, 2, 0, 1, 1, 2, 0, 3, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2012

Keywords

Comments

Periodic with period length 210. - Amiram Eldar, Sep 16 2023

Crossrefs

Number of distinct prime factors <= p: A171182 (p=3), A178146 (p=5), this sequence (p=7).

Programs

Formula

a(n) <= 4.
a(A008364(n)) = 0; a(A080672(n)) > 0.
a(n) = A001221(n) iff n is 7-smooth: a(A002473(n)) = A001221(A002473(n)). [corrected by Amiram Eldar, Sep 16 2023]
From Amiram Eldar, Sep 16 2023: (Start)
Additive with a(p^e) = 1 if p <= 7, and 0 otherwise.
a(n) = A001221(A165743(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 247/210. (End)

A236206 Numbers not divisible by 3, 5 or 7.

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 16, 17, 19, 22, 23, 26, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 88, 89, 92, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 118, 121, 122, 124, 127, 128, 131, 134, 136
Offset: 1

Views

Author

Oleg P. Kirillov, Jan 20 2014

Keywords

Comments

Numbers whose odd part is 11-rough: products of terms of A008364 and powers of 2 (terms of A000079). - Peter Munn, Aug 03 2020
Numbers coprime to 105. The asymptotic density of this sequence is 16/35. - Amiram Eldar, Oct 23 2020

Crossrefs

Subsequences: A000079, A008364.
Intersection of any 2 of A160545, A229829, A235933.
Other sequences with similar definitions: A007775, A236217.

Programs

  • Mathematica
    Select[Range[300], Mod[#, 3] > 0 && Mod[#, 5] > 0 && Mod[#, 7] > 0 &] (* T. D. Noe, Feb 05 2014 *)
    Select[Range[300],Or@@Divisible[#,{3,5,7}]==False&] (* Harvey P. Dale, Mar 13 2014 *)
    Select[Range[150], CoprimeQ[105, #] &] (* Amiram Eldar, Oct 23 2020 *)

Formula

a(n) = a(n-1) + a(n-48) - a(n-49). - Amiram Eldar, Oct 23 2020
Previous Showing 11-20 of 44 results. Next