cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 83 results. Next

A027416 Number of unlabeled (and unrooted) trees on n nodes having a centroid.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 3, 11, 13, 47, 61, 235, 341, 1301, 1983, 7741, 12650, 48629, 82826, 317955, 564225, 2144505, 3926353, 14828074, 27940136, 104636890, 201837109, 751065460, 1479817181, 5469566585, 10975442036, 40330829030, 82270184950
Offset: 0

Views

Author

Keywords

Comments

Also, number of rooted unlabeled trees on n nodes not having a primary branch.
A tree has either a center or a bicenter and either a centroid or a bicentroid. (These terms were introduced by Jordan.)
If the number of edges in a longest path in the tree is 2m, then the middle node in the path is the unique center, otherwise the two middle nodes in the path are the unique bicenters.
On the other hand, define the weight of a node P to be the greatest number of nodes in any subtree connected to P. Then either there is a unique node of minimal weight, the centroid of the tree, or there is a unique pair of minimal weight nodes, the bicentroids.
Let T be a tree with root node R. If R and the edges incident with it are deleted, the resulting rooted trees are called branches. A primary branch (there can be at most one) has i nodes where n/2 <= i <= n-1.

References

  • F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1994; pp. 35, 36.

Crossrefs

Cf. A102911 (trees with a bicentroid), A027415 (trees with a primary branch), A000676 (trees with a center), A000677 (trees with a bicenter), A000055 (trees), A000081 (rooted trees).

Programs

  • Maple
    N := 50: Y := [ 1,1 ]: for n from 3 to N do x*mul( (1-x^i)^(-Y[ i ]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); Y := [ op(Y),b ]; od: P:=n->sum(Y[n-i]*Y[i],i=1..floor(n/2)): seq(Y[n]-P(n),n=1..35); # Emeric Deutsch, Nov 21 2004

Formula

a(n) = A000055(n) - A102911(n/2) if n is even, else a(n) = A000055(n).
a(n) = A000081(n) - A027415(n). - Emeric Deutsch, Nov 21 2004
a(n) = [x^n] 1 + x/Product_{i=1..ceiling(n/2)-1} (1-x^i)^A000081(i). See Cayley link above. - Geoffrey Critzer, Jul 30 2022

Extensions

More terms from Emeric Deutsch, Nov 21 2004
Entry revised (with new definition) by N. J. A. Sloane, Feb 26 2007

A052283 Triangle read by rows: T(n,k) is the number of unlabeled directed graphs on n nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 5, 13, 27, 38, 48, 38, 27, 13, 5, 1, 1, 1, 1, 5, 16, 61, 154, 379, 707, 1155, 1490, 1670, 1490, 1155, 707, 379, 154, 61, 16, 5, 1, 1, 1, 1, 5, 17, 76, 288, 1043, 3242, 8951, 21209, 43863, 78814, 124115, 171024, 207362, 220922, 207362, 171024, 124115, 78814, 43863, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Feb 07 2000

Keywords

Comments

Triangular array read by rows T(n,k) is the number of unlabeled directed graphs (no self loops allowed) on n nodes with exactly k edges where n >= 1, 0 <= k <= n(n-1). - Geoffrey Critzer, Nov 01 2011

Examples

			[1],
[1],
[1,1,1],
[1,1,4,4,4,1,1],
[1,1,5,13,27,38,48,38,27,13,5,1,1];
(the last batch giving the numbers of directed graphs with 4 nodes and from 0 to 12 arcs).
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 247.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 522.

Crossrefs

Cf. A000273 (row sums), A070166, A008406, A003085, A283753 (weakly connected).

Programs

  • Mathematica
    Table[CoefficientList[GraphPolynomial[n, x, Directed], x], {n, 1, 10}] (* Geoffrey Critzer, Nov 01 2011 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^(2 g), {i, 2, Length[v]}, {j, 1, i-1}] * Product[ t[v[[i]]]^(v[[i]] - 1), {i, 1, Length[v]}];
    gp[n_] := (s = 0; Do[s += permcount[p]*edges[p, 1 + x^# &], {p, IntegerPartitions[n]}]; s/n!);
    A052283 = Reap[For[n = 1, n <= 6, n++, p = gp[n]; For[k = 0, k <= Exponent[p, x], k++, Sow[Coefficient[p, x, k]]]]][[2, 1]] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    gp(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p,i->1+x^i)); s/n!}
    for(n=1, 6, my(p=gp(n)); for(k=0, poldegree(p), print1(polcoeff(p,k), ", ")); print); \\ Andrew Howroyd, Nov 05 2017

Formula

T(n,0) = T(n,1) = T(n,n(n-1)-1) = T(n,n) = 1. - Geoffrey Critzer, Nov 01 2011
T(2k,k) = T(2k+1,k) = T(2k+2,k) =... and is the maximum value of column k. - Geoffrey Critzer, Nov 01 2011

Extensions

a(0)=1 prepended and terms a(62) and beyond from Andrew Howroyd, Apr 20 2020

A241706 Number of simple connected graphs on n nodes with diameter 2.

Original entry on oeis.org

0, 0, 1, 4, 14, 59, 373, 4154, 91518, 4116896
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=2 of A294522.
Simple connected graphs of diameter k: A241706, A241707, A241708, A241709, A241710.

A000717 Number of graphs with n nodes and floor(n(n-1)/4) edges.

Original entry on oeis.org

1, 1, 1, 3, 6, 24, 148, 1646, 34040, 1358852, 106321628, 16006173014, 4525920859198, 2404130854745735, 2426376196165902704, 4648429222263945620900, 16788801124652327714275292, 114722035311851620271616102401
Offset: 1

Views

Author

Keywords

Comments

This is the largest number of graphs with n vertices that all have the same number of edges. a(n) <= A371161(n). - Allan Bickle, Apr 18 2024

Examples

			There are three graphs with 4 vertices and 3 edges, K_3 U K_1, K_{1,3}, and P_4, so a(4) = 3. - _Allan Bickle_, Apr 18 2024
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Sean A. Irvine, Mar 10 2011

A201922 Triangle read by rows: T(n,m) = number of unlabeled graphs on n nodes with m connected components, m = 1,2,...,n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 21, 8, 3, 1, 1, 112, 30, 9, 3, 1, 1, 853, 145, 32, 9, 3, 1, 1, 11117, 1028, 154, 33, 9, 3, 1, 1, 261080, 12320, 1065, 156, 33, 9, 3, 1, 1, 11716571, 274806, 12513, 1074, 157, 33, 9, 3, 1, 1, 1006700565, 12007355, 276114, 12550, 1076, 157, 33, 9, 3, 1, 1
Offset: 1

Views

Author

Max Alekseyev, Dec 06 2011

Keywords

Examples

			Triangle starts:
    1
    1   1
    2   1   1
    6   3   1   1
   21   8   3   1   1
  112  30   9   3   1   1
  853 145  32   9   3   1   1 ...
		

Crossrefs

Cf. A001349 (first column), A000088 (row sum), A201968 (limits in the diagonals), A106240, A274934 (2nd column).

Programs

  • Mathematica
    nn=10; c=(A000088=Table[NumberOfGraphs[n], {n,0,nn}]; f[x_] = 1-Product[1/(1-x^k)^a[k], {k,1,nn}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x,0,nn}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; Table[a[n], {n,0,nn}]/.sol); f[list_]:=Select[list,#>0&]; g=Product[1/(1-y x^n)^c[[n+1]], {n,1,nn}]; Map[f, Drop[CoefficientList[Series[g, {x,0,nn}], {x,y}],1]] //Flatten (* Geoffrey Critzer, Apr 19 2012  (c in above Mma code is given by Jean Francois Alcover in A001349) *)

Formula

T(n,m) = sum over the partitions of n with m parts: 1*K1 + 2*K2 + ... + n*Kn = n, K1 + K2 + ... + Kn = m, of Product_{i=1..n} binomial(A001349(i) + Ki - 1, Ki).
O.g.f.: Product_{n>=1} 1/(1 - y*x^n)^A001349(n). - Geoffrey Critzer, Apr 19 2012

A241707 Number of simple connected graphs on n nodes with diameter 3.

Original entry on oeis.org

0, 0, 0, 1, 5, 43, 387, 5797, 148229, 6959721
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=3 of A294522.
Simple connected graphs of diameter k: A241706, A241707, A241708, A241709, A241710.

A263859 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of posets with n elements and rank k (or depth k+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 20, 31, 10, 1, 1, 55, 162, 84, 15, 1, 1, 163, 940, 734, 185, 21, 1, 1, 556, 6372, 7305, 2380, 356, 28, 1, 1, 2222, 52336, 86683, 35070, 6259, 623, 36, 1, 1, 10765, 534741, 1261371, 619489, 125597, 14258, 1016, 45, 1
Offset: 1

Views

Author

Christian Stump, Oct 28 2015

Keywords

Comments

Row sums give A000112, n >= 1.
The rank of a poset is the number of cover relations in a maximal chain.

Examples

			Triangle begins:
1,
1,1,
1,3,1,
1,8,6,1,
1,20,31,10,1,
1,55,162,84,15,1,
1,163,940,734,185,21,1,
1,556,6372,7305,2380,356,28,1,
1,2222,52336,86683,35070,6259,623,36,1,
1,10765,534741,1261371,619489,125597,14258,1016,45,1,
...
		

Crossrefs

Cf. A000112 (row sums), A342500 (connected).

Extensions

More terms from Brinkmann-McKay (2002) added by N. J. A. Sloane, Mar 18 2017

A370316 Number of unlabeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 2, 5, 10, 28, 68, 193, 534, 1568, 4635, 14146, 43610, 137015, 435227, 1400058, 4547768, 14917504, 49348612, 164596939, 553177992, 1872805144, 6385039022, 21917878860, 75739158828, 263438869515, 922219844982, 3249042441125, 11519128834499, 41097058489426
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2024

Keywords

Examples

			The a(0) = 1 through a(5) = 10 simple graphs:
  {}  .  {12}  {12-13}     {12-34}        {12-13-45}
               {12-13-23}  {12-13-14}     {12-13-14-15}
                           {12-13-24}     {12-13-14-25}
                           {12-13-14-23}  {12-13-23-45}
                           {12-13-24-34}  {12-13-24-35}
                                          {12-13-14-15-23}
                                          {12-13-14-23-25}
                                          {12-13-14-23-45}
                                          {12-13-14-25-35}
                                          {12-13-24-35-45}
		

Crossrefs

The connected case is A005703, labeled A129271.
The case of exactly n edges is A006649, covering case of A001434.
The labeled version is A369191.
Partial row sums of A370167, covering case of A008406.
The non-covering version with loops is A370168, labeled A066383.
The version with loops is A370169, labeled A369194.
The non-covering version is A370315, labeled A369192.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{0,n}], Union@@#==Range[n]&]]],{n,0,5}]
  • PARI
    \\ G defined in A008406.
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 19 2024

A039735 Triangle read by rows: T(n,k) = number of nonisomorphic unlabeled planar graphs with n >= 1 nodes and 0 <= k <= 3n-6 edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 4, 6, 6, 6, 4, 2, 1, 1, 1, 2, 5, 9, 15, 21, 24, 24, 20, 13, 5, 2, 1, 1, 2, 5, 10, 21, 41, 65, 97, 130, 144, 135, 98, 51, 16, 5, 1, 1, 2, 5, 11, 24, 56, 115, 221, 401, 658, 956, 1217, 1264, 1042, 631, 275, 72, 14, 1, 1, 2, 5
Offset: 1

Views

Author

Keywords

Comments

Planar graphs with n >= 3 nodes have at most 3n-6 edges. - Charles R Greathouse IV, Feb 18 2013

Examples

			Triangle starts
n\k 0  1  2  3  4  5  6  7  8  9 10 11 12
--:-- -- -- -- -- -- -- -- -- -- -- -- --
1:  1
2:  1  1
3:  1  1  1  1
4:  1  1  2  3  2  1  1
5:  1  1  2  4  6  6  6  4  2  1
6:  1  1  2  5  9 15 21 24 24 20 13  5  2
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. J. Wilson, Introduction to Graph Theory. Academic Press, NY, 1972, p. 162.

Crossrefs

Cf. A005470 (row sums), A008406, A049334.

Formula

From Michael Somos, Aug 23 2015: (Start)
Sum_{k} T(n, k) = A005470(n) if n >= 1.
log(1 + A(x, y)) = Sum_{n>0} B(x^n, y^n) / n where A(x, y) = Sum_{n>0, k>=0} T(n,k) * x^n * y^k and similarly B(x, y) with A049334. (End)

A046742 Triangle of number of connected graphs with k >= 1 edges and n nodes (2 <= n <= k+1).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 6, 0, 0, 1, 5, 13, 11, 0, 0, 0, 4, 19, 33, 23, 0, 0, 0, 2, 22, 67, 89, 47, 0, 0, 0, 1, 20, 107, 236, 240, 106, 0, 0, 0, 1, 14, 132, 486, 797, 657, 235, 0, 0, 0, 0, 9, 138, 814, 2075, 2678, 1806, 551, 0, 0, 0, 0, 5, 126, 1169, 4495, 8548, 8833, 5026, 1301
Offset: 1

Views

Author

Keywords

Examples

			1;
0 1;
0 1 2;
0 0 2 3;
0 0 1 5 6;
0 0 1 5 13 11;
0 0 0 4 19 33 23;
0 0 0 2 22 67 89 47;
0 0 0 1 20 107 236 240 106;
0 0 0 1 14 132 486 797 657 235;
0 0 0 0 9 138 814 2075 2678 1806 551;
0 0 0 0 5 126 1169 4495 8548 8833 5026 1301;
0 0 0 0 2 95 1454 8404 22950 33851 28908 13999 3159;
0 0 0 0 1 64 1579 13855 53863 109844 130365 93569 39260 7741;
0 0 0 0 1 40 1515 20303 112618 313670 499888 489387 300748 110381 19320;
0 0 0 0 0 21 1290 26631 211866 803905 1694642 2179949 1799700 959374 311465 ...
... (so with 5 edges there's 1 graph with 4 nodes, 5 with 5 nodes and 1 with 6 nodes).
		

Crossrefs

Cf. A002905 (row sums), A008406, A046751, A054923, A054924 (transpose), A001349 (column sums).

Extensions

Data corrected by Sean A. Irvine, Apr 23 2021
Previous Showing 41-50 of 83 results. Next