cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A035598 Number of points of L1 norm 4 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 16, 66, 192, 450, 912, 1666, 2816, 4482, 6800, 9922, 14016, 19266, 25872, 34050, 44032, 56066, 70416, 87362, 107200, 130242, 156816, 187266, 221952, 261250, 305552, 355266, 410816, 472642, 541200, 616962, 700416, 792066
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [( 2*n^4 +4*n^2 )/3: n in [0..40]]; // Vincenzo Librandi, Apr 22 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^3/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,2,16,66,192},50] (* Harvey P. Dale, Dec 11 2019 *)
  • PARI
    a(n)=2*n^2*(n^2+2)/3 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = 2*n^2*(n^2 + 2)/3. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^3/(1-x)^5. - Colin Barker, Apr 15 2012
a(n) = 2*A014820(n-1). - R. J. Mathar, Dec 10 2013
a(n) = a(n-1) + A035597(n) + A035597(n-1). - Bruce J. Nicholson, Mar 11 2018
From Shel Kaphan, Feb 28 2023: (Start)
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=4.
a(n) = A001846(n) - A001845(n).
a(n) = A008412(n)*n/4. (End)
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 - 3*Pi*coth(sqrt(2)*Pi)/(8*sqrt(2)) + 3/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/16 + 3*Pi*cosech(sqrt(2)*Pi)/(8*sqrt(2)) - 3/16. (End)
E.g.f.: 2*exp(x)*x*(3 + 9*x + 6*x^2 + x^3)/3. - Stefano Spezia, Mar 14 2024

A008416 Coordination sequence for 8-dimensional cubic lattice.

Original entry on oeis.org

1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048, 1229360, 2187520, 3732560, 6140800, 9785072, 15158272, 22900496, 33830016, 48978352, 69629696, 97364944, 134110592, 182192752, 244396544, 324031120, 425000576
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 8-dimensional cyclotomic lattice Z[zeta_16].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 + x)/(1 - x))^8, {x, 0, 26}], x] (* Michael De Vlieger, Dec 18 2017 *)

Formula

G.f.: ((1+x)/(1-x))^8.
a(n) = A008415(n) + A008415(n-1) + a(n-1). - Bruce J. Nicholson, Dec 17 2017
n*a(n) = 16*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

A180670 a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 9, 42, 140, 383, 925, 2056, 4316, 8705, 17069, 32810, 62192, 116743, 217673, 404000, 747496, 1380177, 2544865, 4688186, 8631620, 15886111, 29230725, 53776968, 98926372, 181971057, 334716197, 615660634, 1132400520
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+2) represent the Kn15 and Kn25 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Programs

  • Maple
    nmax:=29: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 od: seq(a(n),n=0..nmax);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+(8n^3-48n^2+112n-96)/3},a,{n,30}] (* or *) LinearRecurrence[{5,-9,7,-3,3,-3,1},{0,0,1,9,42,140,383},30] (* Harvey P. Dale, Dec 04 2019 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.
a(n) = a(n-1)+A001590(n+7)-(12+4*n+4*n^2) with a(0)=0.
a(n) = sum(A008412(m)*A000073(n-m),m=0..n).
a(n+2) = add(A008288(n-k+4,k+4),k=0..floor(n/2)).
GF(x) = (x^2*(1+x)^4)/((1-x)^4*(1-x-x^2-x^3)).

A217873 a(n) = 4*n*(n^2 + 2)/3.

Original entry on oeis.org

0, 4, 16, 44, 96, 180, 304, 476, 704, 996, 1360, 1804, 2336, 2964, 3696, 4540, 5504, 6596, 7824, 9196, 10720, 12404, 14256, 16284, 18496, 20900, 23504, 26316, 29344, 32596, 36080, 39804, 43776, 48004, 52496, 57260, 62304, 67636, 73264, 79196, 85440, 92004
Offset: 0

Views

Author

M. F. Hasler, Oct 13 2012

Keywords

Comments

Occurs as 4th column in the table A142978 of figurate numbers for n-dimensional cross polytope.

Crossrefs

Programs

  • Magma
    [4*n*(n^2+2)/3: n in [0..45]]; // Vincenzo Librandi, Nov 08 2012
  • Mathematica
    Table[4n(n^2 + 2)/3, {n, 0, 39}] (* Alonso del Arte, Oct 22 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,4,16,44},50] (* Harvey P. Dale, Mar 16 2015 *)
  • Maxima
    makelist(4*n*(n^2+2)/3, n, 0, 41); /* Martin Ettl, Oct 15 2012 */
    
  • PARI
    a(n)=(n^2+2)*n/3*4
    

Formula

a(n) = 4*A006527(n).
From Peter Luschny, Oct 14 2012: (Start)
a(n) = A008412(n)/2.
a(n) = A174794(n+1) - 1.
First differences are in A112087.
Second differences are in A008590 and A022144.
Binomial transformation of (a(n), n > 0) is A082138. (End)
G.f.: 4*x*(1 + x^2)/(x - 1)^4. - R. J. Mathar, Oct 15 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(0)=0, a(1)=4, a(2)=16, a(3)=44. - Harvey P. Dale, Mar 16 2015
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: 4*exp(x)*x*(3 + 3*x + x^2)/3.
a(n) = A292022(n)/3. (End)

A057884 A square array based on tetrahedral numbers (A000292) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 4, 1, 1, 0, 4, 2, 1, 10, 4, 5, 3, 1, 0, 10, 8, 7, 4, 1, 20, 10, 14, 13, 10, 5, 1, 0, 20, 20, 22, 20, 14, 6, 1, 35, 20, 30, 34, 35, 30, 19, 7, 1, 0, 35, 40, 50, 56, 55, 44, 25, 8, 1, 56, 35, 55, 70, 84, 91, 85, 63, 32, 9, 1, 0, 56, 70, 95, 120, 140, 146, 129, 88, 40, 10, 1
Offset: 0

Views

Author

Henry Bottomley, Nov 20 2000

Keywords

Examples

			Rows are (1,0,4,0,10,0,20,...), (1,1,4,4,10,10,20,...), (1,2,5,8,14,20,30,...), (1,3,7,13,22,34,50,...), (1,4,10,20,35,56,84,...) etc.
		

Crossrefs

Rows are A000292 with zeros, A058187 (A000292 with terms duplicated), A006918, A002623, A000292, A000330, A005900, A001845, A008412.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(4, 1)=4, T(0, 2n)=T(4, n) and T(0, 2n+1)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2)^4.

A343599 T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 4, 1, 6, 18, 1, 8, 32, 88, 1, 10, 50, 170, 450, 1, 12, 72, 292, 912, 2364, 1, 14, 98, 462, 1666, 4942, 12642, 1, 16, 128, 688, 2816, 9424, 27008, 68464, 1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 1, 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, 1, 22, 242, 1782, 9922, 44726, 170610, 568150, 1690370, 4573910, 11414898
Offset: 0

Views

Author

R. J. Mathar, Apr 21 2021

Keywords

Examples

			The full array starts
     1      2      2      2      2      2      2      2      2
     1      4      8     12     16     20     24     28     32
     1      6     18     38     66    102    146    198    258
     1      8     32     88    192    360    608    952   1408
     1     10     50    170    450   1002   1970   3530   5890
     1     12     72    292    912   2364   5336  10836  20256
     1     14     98    462   1666   4942  12642  28814  59906
     1     16    128    688   2816   9424  27008  68464 157184
     1     18    162    978   4482  16722  53154 148626 374274
		

Crossrefs

Cf. A035607 (by antidiags), A008574 (n=1), A005899 (n=2), A008412 (n=3), A008413 (n=4), A008414 (n=5), A001105 (k=2), A035597 (k=3), A035598 (k=4).
Main diagonal gives A050146(n+1).

Programs

  • Maple
    A343599 := proc(n,k)
        local g,x,y ;
        g := (1+y)/(1-x-y-x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
  • Mathematica
    T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)

Formula

G.f.: (1+y)/(1-x-y-x*y).
T(n,k) = A008288(n,k) + A008288(n,k-1).

A035878 Number of points of l_1 norm n in the "diamond" lattice D^+_4.

Original entry on oeis.org

1, 0, 40, 32, 272, 160, 888, 448, 2080, 960, 4040, 1760, 6960, 2912, 11032, 4480, 16448, 6528, 23400, 9120, 32080, 12320, 42680, 16192, 55392, 20800, 70408, 26208, 87920, 32480, 108120, 39680, 131200, 47872, 157352, 57120, 186768, 67488, 219640, 79040, 256160
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Examples

			This 4D lattice consists of points with coordinates that have even sum and are either all integer or all half-integer. (It is actually similar to Z^4.) The a(2) = 40 lattice vectors having l_1 norm 2 include: +-(1,1,1,1)/2, 6 permutations of (1,1,-1,-1)/2, 6 permutations with 4 choices of signs in (+-1,+-1,0,0), and 4 permutations with 2 choices of signs in (+-2,0,0,0), totaling 2 + 6 + 6*4 + 4*2 = 40.
		

Crossrefs

Programs

  • Maple
    n := 4; A035878 := proc(m) global n; local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end;
  • Mathematica
    f[m_, n_] := 2^(n-1) *Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2 *n* Hypergeometric2F1[1-m, 1-n, 2, 2], 0]; f[0, ] = 1; Table[f[m, 4], {m, 0, 32}] (* _Jean-François Alcover, Apr 18 2013, after Maple *)
    CoefficientList[Series[(x^8 + 36 x^6 + 32 x^5 + 118 x^4 + 32 x^3 + 36 x^2 + 1)/((x - 1)^4 (x + 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)

Formula

For n>0, a(n) = ( 2n^2 + 1 + (n^2+2)*(-1)^n ) * 4n/3.
G.f.: (x^8+36*x^6+32*x^5+118*x^4+32*x^3+36*x^2+1) / ((x-1)^4*(x+1)^4). - Colin Barker, Nov 18 2012

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
More terms from Vincenzo Librandi, Oct 21 2013
Name edited by Andrey Zabolotskiy, Aug 29 2022

A191596 Expansion of (1+x)^4/(1-x)^7.

Original entry on oeis.org

1, 11, 62, 242, 743, 1925, 4396, 9108, 17469, 31471, 53834, 88166, 139139, 212681, 316184, 458728, 651321, 907155, 1241878, 1673882, 2224607, 2918861, 3785156, 4856060, 6168565, 7764471, 9690786, 12000142, 14751227, 18009233, 21846320
Offset: 0

Views

Author

Bruno Berselli, Jun 08 2011

Keywords

Comments

The first, second and third differences are in A069038, A001846 and A008412, respectively.
Inverse binomial transform of this sequence: 1, 10, 41, 88, 104, 64, 16, 0, 0 (0 continued).
Also (by Superseeker), the n-th coefficient of the expansion of ((1+x)^4/(1-x)^7)*(1+x)^n is A006976(n-1).

Crossrefs

Cf. A008415, A001848, A069039, A008412, A001846, A069038, A061927 (for type of g.f.).

Programs

  • Magma
    [(2*n^6+18*n^5+80*n^4+210*n^3+323*n^2+267*n+90)/90: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maple
    A191596:=n->(n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90: seq(A191596(n), n=0..40); # Wesley Ivan Hurt, Nov 20 2014
  • Mathematica
    CoefficientList[Series[(1 + x)^4/(1 - x)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 20 2014 *)
  • Maxima
    makelist(coeff(taylor((1+x)^4/(1-x)^7, x, 0, n), x, n), n, 0, 30);
    
  • PARI
    a(n)=(((((n+n+18)*n+80)*n+210)*n+323)*n+267)/90*n+1 \\ Charles R Greathouse IV, Jun 08 2011

Formula

G.f.: (1+x)^4/(1-x)^7.
a(n) = (n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90.
a(n) = a(-n-3) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
By Superseeker:
a(n)+a(n+1) = A069039(n+2),
a(n+2)-a(n) = A001847(n+2),
a(n+2)+2*a(n+1)+a(n) = A001848(n+2).

A236967 Expansion of (1+3*x)^2/(1-3*x)^2.

Original entry on oeis.org

1, 12, 72, 324, 1296, 4860, 17496, 61236, 209952, 708588, 2361960, 7794468, 25509168, 82904796, 267846264, 860934420, 2754990144, 8781531084, 27894275208, 88331871492, 278942752080, 878669669052, 2761533245592, 8661172452084, 27113235502176, 84728860944300
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Expansion of (1 + k*x)^m/(1 - k*x)^m where the values of k,m are:
......|..m = 1..|..m = 2..|..m = 3..|..m = 4..|..m = 5..|..m = 6..|
k = 2 | A151821 | A241204 | | | | |
k = 3 | A099856 | A236967 | | | | |
k = 4 | A081654 | | | | | |
-------------------------------------------------------------------

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)^2/(1-3*x)^2));

Formula

For n >= 1, a(n) = 4*n*3^n. - Robert Israel, May 08 2014

Extensions

Edited by Wolfdieter Lang, May 07 2014
Previous Showing 11-19 of 19 results.