cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 79 results. Next

A084948 a(n) = Product_{i=0..n-1} (8*i+2).

Original entry on oeis.org

1, 2, 20, 360, 9360, 318240, 13366080, 668304000, 38761632000, 2558267712000, 189311810688000, 15523568476416000, 1397121162877440000, 136917873961989120000, 14513294639970846720000, 1654515588956676526080000, 201850901852714536181760000, 26240617240852889703628800000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 8*k+2) ); # G. C. Greubel, Aug 18 2019
  • Magma
    [1] cat [(&*[8*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    a := n->product(8*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    Table[8^n*Pochhammer[1/4, n], {n,0,20}] (* G. C. Greubel, Aug 18 2019 *)
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 8*k+2)) \\ G. C. Greubel, Aug 18 2019
    
  • Sage
    [product(8*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = A084943(n)/A000142(n)*A000079(n) = 8^n*Pochhammer(1/4, n) = 1/2*Gamma(n+1/4)*sqrt(2)*Gamma(3/4)*8^n/Pi.
a(n) = (-6)^n*Sum_{k=0..n} (4/3)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+2)/(2*x*(8*k+2) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 8*x)^(1/4).
a(n) ~ sqrt(2*Pi)*8^n*n^n/(exp(n)*n^(1/4)*Gamma(1/4)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/8^6)^(1/8)*(Gamma(1/4) - Gamma(1/4, 1/8)). - Amiram Eldar, Dec 20 2022

A084949 a(n) = Product_{i=0..n-1} (9*i+2).

Original entry on oeis.org

1, 2, 22, 440, 12760, 484880, 22789360, 1276204160, 82953270400, 6138542009600, 509498986796800, 46873906785305600, 4734264585315865600, 520769104384745216000, 61971523421784680704000, 7932354997988439130112000, 1086732634724416160825344000, 158662964669764759480500224000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # G. C. Greubel, Aug 19 2019
  • Magma
    [1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 19 2019
    
  • Maple
    a:= n-> product(9*i+2,i=0..n-1); seq(a(j),j=0..20);
  • Mathematica
    Table[9^n*Pochhammer[2/9, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
  • PARI
    vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ G. C. Greubel, Aug 19 2019
    
  • Sage
    [product(9*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
    

Formula

a(n) = A084944(n)/A000142(n)*A000079(n) = 9^n*Pochhammer(2/9, n) = 9^n*Gamma(n+2/9)/Gamma(2/9).
a(n) = (-7)^n*Sum_{k=0..n} (9/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: (1-9*x)^(-2/9). - Robert Israel, Mar 22 2017
D-finite with recurrence: a(n) + (-9*n+7)*a(n-1) = 0. - R. J. Mathar, Jan 20 2020
Sum_{n>=0} 1/a(n) = 1 + (e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). - Amiram Eldar, Dec 21 2022
a(n) ~ sqrt(2*Pi) * (9/e)^n * n^(n-5/18) / Gamma(2/9). - Amiram Eldar, Aug 30 2025

A225470 Triangle read by rows, s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 2, 1, 10, 7, 1, 80, 66, 15, 1, 880, 806, 231, 26, 1, 12320, 12164, 4040, 595, 40, 1, 209440, 219108, 80844, 14155, 1275, 57, 1, 4188800, 4591600, 1835988, 363944, 39655, 2415, 77, 1, 96342400, 109795600, 46819324, 10206700, 1276009, 95200, 4186, 100, 1
Offset: 0

Views

Author

Peter Luschny, May 16 2013

Keywords

Comments

The Stirling-Frobenius subset numbers S_{m}(n,k), for m >= 1 fixed, regarded as an infinite lower triangular matrix, can be inverted by Sum_{k} S_{m}(n,k)*s_{m}(k,j)*(-1)^(n-k) = [j = n]. The inverse numbers s_{m}(k,j), which are unsigned, are the Stirling-Frobenius cycle numbers. For m = 1 this gives the classical Stirling cycle numbers A132393. The Stirling-Frobenius subset numbers are defined in A225468.
Triangle T(n,k), read by rows, given by (2, 3, 5, 6, 8, 9, 11, 12, 14, 15, ... (A007494)) DELTA (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015

Examples

			Triangle starts:
  [n\k][    0,      1,     2,     3,    4,  5,  6]
  [0]       1,
  [1]       2,      1,
  [2]      10,      7,     1,
  [3]      80,     66,    15,     1,
  [4]     880,    806,   231,    26,    1,
  [5]   12320,  12164,  4040,   595,   40,  1,
  [6]  209440, 219108, 80844, 14155, 1275, 57,  1.
  ...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence (see Maple program): T(4, 2) = T(3, 1) + (3*4 - 1)*T(3, 2) = 66 + 11*15 = 231.
Boas-Buck type recurrence for column k = 2 and n = 4: T(4, 2) = (4!/2)*(3*(2 + 6*(5/12))*T(2, 2)/2! + 1*(2 + 6*(1/2))*T(3,2)/3!) = (4!/2)*(3*9/4 + 5*15/3!) = 231. (End)
		

Crossrefs

Cf. A225468; A132393 (m=1), A028338 (m=2), A225471(m=4).
Column k=0..4 give A008544, A024395(n-1), A286722(n-2), A383221, A383222.
T(n, n) ~ A000012; T(n, n-1) ~ A005449; T(n, n-2) ~ A024391; T(n, n-3) ~ A024392.
row sums ~ A032031; alternating row sums ~ A007559.
Cf. A132393.

Programs

  • Maple
    SF_C := proc(n, k, m) option remember;
    if n = 0 and k = 0 then return(1) fi;
    if k > n or  k < 0 then return(0) fi;
    SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m) end:
    seq(print(seq(SF_C(n, k, 3), k = 0..n)), n = 0..8);
  • Mathematica
    SFC[0, 0, ] = 1; SFC[n, k_, ] /; (k > n || k < 0) = 0; SFC[n, k_, m_] := SFC[n, k, m] = SFC[n-1, k-1, m] + (m*n-1)*SFC[n-1, k, m]; Table[SFC[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)

Formula

For a recurrence see the Maple program.
From Wolfdieter Lang, May 18 2017: (Start)
This is the Sheffer triangle (1/(1 - 3*x)^{-2/3}, -(1/3)*log(1-3*x)). See the P. Bala link where this is called exponential Riordan array, and the signed version is denoted by s_{(3,0,2)}.
E.g.f. of row polynomials in the variable x (i.e., of the triangle): (1 - 3*z)^{-(2+x)/3}.
E.g.f. of column k: (1-3*x)^(-2/3)*(-(1/3)*log(1-3*x))^k/k!, k >= 0.
Recurrence for row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k: R(n, x) = (x+2)*R(n-1,x+3), with R(0, x) = 1.
R(n, x) = risefac(3,2;x,n) := Product_{j=0..(n-1)} (x + (2 + 3*j)). (See the P. Bala link, eq. (16) for the signed s_{3,0,2} row polynomials.)
T(n, k) = Sum_{j=0..(n-m)} binomial(n-j, k)* S1p(n, n-j)*2^(n-k-j)*3^j, with S1p(n, m) = A132393(n, m). (End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 3^(n-1-p)*(2 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017

A049308 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+4).

Original entry on oeis.org

1, 4, 40, 640, 14080, 394240, 13404160, 536166400, 24663654400, 1282510028800, 74385581670400, 4760677226905600, 333247405883392000, 25326802847137792000, 2076797833465298944000, 182758209344946307072000, 17179271678424952864768000, 1717927167842495286476800000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 4^(n-1) else 2*(3*n-1)*Self(n-1): n in [1..30]]; // G. C. Greubel, Mar 29 2022
    
  • Mathematica
    Table[6^n*Pochhammer[2/3, n], {n,0,30}] (* G. C. Greubel, Mar 29 2022 *)
  • PARI
    a(n) = prod(k=0, n-1, 6*k+4); \\ Michel Marcus, Mar 30 2022
  • Sage
    [6^n*rising_factorial(2/3,n) for n in (0..30)] # G. C. Greubel, Mar 29 2022
    

Formula

E.g.f.: (1-6*x)^(-2/3).
a(n) = 2^n*A008544(n).
G.f.: 1/(1-4*x/(1-6*x/(1-10*x/(1-12*x/(1-16*x/(1-18*x/(1-22*x/(1-24*x/(1-28*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-2)^n*Sum_{k=0..n} 3^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: ( 1 - 1/Q(0) )/x/2 where Q(k) = 1 - x*(6*k-2)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
D-finite with recurrence: a(n) = 2*(3*n-1)*a(n-1). - R. J. Mathar, Jan 17 2020
From G. C. Greubel, Mar 29 2022: (Start)
a(n) = 6^n * Pochhammer(n, 2/3).
G.f.: Hypergeometric2F0([1, 2/3], [], 6*x). (End)
Sum_{n>=0} 1/a(n) = 1 + exp(1/6)*(Gamma(2/3) - Gamma(2/3, 1/6))/6^(1/3). - Amiram Eldar, Dec 18 2022
a(n) ~ sqrt(Pi) * 2^(n+1/2) * (3/e)^n * n^(n+1/6) / Gamma(2/3). - Amiram Eldar, Sep 01 2025

A157402 A partition product of Stirling_2 type [parameter k = 2] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 2, 1, 6, 10, 1, 24, 40, 80, 1, 80, 300, 400, 880, 1, 330, 2400, 3600, 5280, 12320, 1, 1302, 15750, 47600, 55440, 86240, 209440, 1, 5936, 129360, 588000, 837760, 1034880, 1675520, 4188800, 1, 26784, 1146040, 5856480
Offset: 1

Views

Author

Peter Luschny, Mar 09 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 2,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A143172.
Same partition product with length statistic is A004747.
Diagonal a(A000217) = A008544.
Row sum is A015735.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(3*j - 1).

A024396 a(n) = ( Product {k = 1..n} 3*k - 1 ) * ( Sum {k = 1..n} (-1)^(k+1)/(3*k - 1) ).

Original entry on oeis.org

1, 3, 34, 294, 4996, 72612, 1661680, 34029840, 981118240, 25947526560, 902963019520, 29279156256000, 1193967167680000, 45861003136704000, 2144641818280192000, 95220827527499520000, 5023176259163442688000, 253121597596239128064000, 14869466904778827894784000
Offset: 1

Views

Author

Keywords

Comments

Original name: s(1)*s(2)*...*s(n)*(1/s(1) - 1/s(2) + ... + c/s(n)), where c = (-1)^(n+1) and s(k) = 3k-1 for k = 1,2,3,...

Crossrefs

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else 3*Self(n-1)+(3*n-4)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2015
  • Maple
    a[1] := 1: a[2] := 3: for n from 3 to 20 do a[n] := 3*a[n-1]+(3*n-4)^2*a[n-2] end do: seq(a[n], n = 1 .. 20); # Peter Bala, Feb 20 2015
  • Mathematica
    Table[Product[3*k-1,{k,1,n}] * Sum[(-1)^(k+1)/(3*k-1),{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Feb 21 2015 *)
    nxt[{n_,a_,b_}]:={n+1,b,3b+a*(3n-1)^2}; NestList[nxt,{2,1,3},20][[;;,2]] (* Harvey P. Dale, Jun 07 2023 *)

Formula

From Peter Bala, Feb 20 2015: (Start)
Recurrence: a(n+1) = 3*a(n) + (3*n - 1)^2*a(n-1) with a(1) = 1 and a(2) = 3.
The triple factorial numbers A008544 satisfy the same second-order recurrence equation. This leads to the continued fraction representation a(n)/A008544(n) = 1/(2 + 2^2/(3 + 5^2/(3 + 8^2/(3 + ... + (3*n - 1)^2/(3 )))).
Taking the limit as n -> infinity gives the generalized continued fraction: Sum {k >= 1} (-1)^(k+1)/(3*k - 1) = 1/(2 + 2^2/(3 + 5^2/(3 + 8^2/(3 + 11^2/(3 + ... ))))) due to Euler. The alternating sum has the value 1/3*( Pi/sqrt(3) - log(2) ) = A193534. Cf. A024217. (End)
a(n) ~ GAMMA(1/3) * 3^(n-1) * n^(n+1/6) * (Pi - sqrt(3)*log(2)) / (sqrt(2*Pi) * exp(n)). - Vaclav Kotesovec, Feb 21 2015

Extensions

New name from Peter Bala, Feb 20 2015
a(18)-a(19) from Vincenzo Librandi, Feb 21 2015

A051605 a(n) = (3*n+5)!!!/5!!!.

Original entry on oeis.org

1, 8, 88, 1232, 20944, 418880, 9634240, 250490240, 7264216960, 232454942720, 8135922995200, 309165073817600, 12675768026521600, 557733793166950400, 26213488278846668800, 1310674413942333440000, 69465743938943672320000, 3890081660580845649920000
Offset: 0

Views

Author

Keywords

Comments

Related to A008544(n+1) ((3*n+2)!!! triple factorials).
Row m=5 of the array A(4; m,n) := ((3*n+m)(!^3))/m(!^3), m >= 0, n >= 0.

Crossrefs

Cf. A032031, A007559(n+1), A034000(n+1), A034001(n+1), A051604 (rows m=0..4).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-3*x)^(8/3))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==(3n+5)a[n-1]},a,{n,20}] (* Harvey P. Dale, Oct 19 2013 *)
    With[{nn = 30}, CoefficientList[Series[1/(1 - 3*x)^(8/3), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(1-3*x)^(8/3))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n) = ((3*n+5)(!^3))/5(!^3).
E.g.f.: 1/(1-3*x)^(8/3).
a(n) = 3^n*(n+5/3)!/(5/3)!. - Paul Barry, Sep 04 2005
a(n) = (3*n+5)*a(n-1). - R. J. Mathar, Nov 13 2012
Sum_{n>=0} 1/a(n) = 1 + 3*(9*e)^(1/3)*(Gamma(8/3) - Gamma(8/3, 1/3)). - Amiram Eldar, Dec 23 2022

A136212 Triple factorial array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions {[m*(m+5)/6], m >= 0} and then taking partial sums, starting with all 1's in row 0.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 28, 10, 3, 1, 280, 80, 18, 4, 1, 3640, 880, 162, 28, 5, 1, 58240, 12320, 1944, 280, 39, 6, 1, 1106560, 209440, 29160, 3640, 418, 52, 7, 1, 24344320, 4188800, 524880, 58240, 5714, 600, 66, 8, 1, 608608000, 96342400, 11022480, 1106560, 95064
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2007

Keywords

Comments

This is the triple factorial variant of Moessner's factorial array described by A125714 and also of the double factorial array A135876. Another very interesting variant is A136217.

Examples

			Square array begins:
(1),(1),(1),1,(1),1,(1),1,(1),1,1,(1),1,1,(1),1,1,(1),1,1,1,(1),1,1,1,...;
(1),(2),(3),4,(5),6,(7),8,(9),10,11,(12),13,14,(15),16,17,(18),19,20,21,..;
(4),(10),(18),28,(39),52,(66),82,(99),118,138,(159),182,206,(231),258,286,..;
(28),(80),(162),280,(418),600,(806),1064,(1350),1696,2074,(2485),2966,3484,..;
(280),(880),(1944),3640,(5714),8680,(12164),16840,(22194),29080,36824,(45474),.;
(3640),(12320),(29160),58240,(95064),151200,(219108),315440,(428652),581680,...;
(58240),(209440),(524880),1106560,(1864456),3082240,...;
where terms in parenthesis are at positions {[m*(m+5)/6], m>=0}
and are removed before taking partial sums to obtain the next row.
To generate the array, start with all 1's in row 0; from then on,
obtain row n+1 from row n by first removing terms in row n at
positions {[m*(m+5)/6], m>=0} and then taking partial sums.
For example, to generate row 2 from row 1:
[(1),(2),(3),4,(5),6,(7),8,(9),10,11,(12),13,14,(15),16,17,(18),...],
remove terms at positions [0,1,2,4,6,8,11,14,17,...] to get:
[4, 6, 8, 10,11, 13,14, 16,17, 19,20,21, 23,24,25, 27,28,29, ...]
then take partial sums to obtain row 2:
[4, 10, 18, 28,39, 52,66, 82,99, 118,138,159, 182,206,231, ...].
Continuing in this way will generate all the rows of this array.
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = Module[{a = 0, m = 0, c = 0, d = 0}, If[n == 0, a = 1, While[d <= k, If[c == Quotient[(m*(m + 5)), 6], m += 1, a += t[n - 1, c]; d += 1]; c += 1]]; a]; Table[t[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013, translated from Pari *)
  • PARI
    {T(n, k)=local(A=0, m=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==(m*(m+5))\6, m+=1, A+=T(n-1, c); d+=1); c+=1)); A}

Formula

Columns 0, 1 and 2 form the triple factorials A007559, A008544 and A032031, respectively. Column 4 equals A024216; column 6 equals A024395.

A193534 Decimal expansion of (1/3) * (Pi/sqrt(3) - log(2)).

Original entry on oeis.org

3, 7, 3, 5, 5, 0, 7, 2, 7, 8, 9, 1, 4, 2, 4, 1, 8, 0, 3, 9, 2, 2, 8, 2, 0, 4, 5, 3, 9, 4, 6, 5, 9, 7, 2, 1, 4, 0, 2, 8, 5, 5, 3, 7, 1, 2, 4, 4, 1, 6, 1, 7, 7, 3, 8, 1, 6, 4, 0, 1, 6, 4, 1, 9, 6, 4, 9, 0, 9, 8, 5, 3, 0, 5, 2, 2, 1, 9, 7, 2, 2, 6, 9, 2, 7, 5, 3, 8, 8, 7, 0, 7, 1, 8, 8, 0, 4
Offset: 0

Views

Author

Alonso del Arte, Jul 29 2011

Keywords

Comments

The formulas for this number and the constant in A113476 are exactly the same except for one small, crucial detail: the infinite sum has a denominator of 3i + 2 rather than 3i + 1, while in the closed form, log(2)/3 is subtracted from rather than added to (Pi * sqrt(3))/9.
Understandably, the typesetter for Spiegel et al. (2009) set the closed formula for this number incorrectly (as being the same as for A113476, compare equation 21.16 on the same page of that book).

Examples

			0.373550727891424180392282045394659721402855371244161773816401641964909853052219...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (80), page 16.
  • J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 132.
  • Murray R. Spiegel, Seymour Lipschutz, John Liu. Mathematical Handbook of Formulas and Tables, 3rd Ed. Schaum's Outline Series. New York: McGraw-Hill, 2009, p. 135, equation 21.18.

Crossrefs

Programs

  • Maple
    evalf((Psi(5/6)-Psi(1/3))/6, 120); # Vaclav Kotesovec, Jun 16 2015
  • Mathematica
    RealDigits[(Pi Sqrt[3])/9 - (Log[2]/3), 10, 100][[1]]
  • PARI
    (Pi/sqrt(3)-log(2))/3 \\ Charles R Greathouse IV, Jul 29 2011
    
  • PARI
    default(realprecision, 98);
    eval(vecextract(Vec(Str(sumalt(n=0, (-1)^(n)/(3*n+2)))), "3..-2")) \\ Gheorghe Coserea, Oct 06 2015

Formula

Equals Sum_{k >= 0} (-1)^k/(3k + 2) = 1/2 - 1/5 + 1/8 - 1/11 + 1/14 - 1/17 + ... (see A016789).
From Peter Bala, Feb 20 2015: (Start)
Equals (1/2) * Integral_{x = 0..1} 1/(1 + x^(3/2)) dx.
Generalized continued fraction: 1/(2 + 2^2/(3 + 5^2/(3 + 8^2/(3 + 11^2/(3 + ... ))))) due to Euler. For a sketch proof see A024396. (End)
Equals (Psi(5/6)-Psi(1/3))/6. - Vaclav Kotesovec, Jun 16 2015
Equals Integral_{x = 1..infinity} 1/(1 + x^3) dx. - Robert FERREOL, Dec 23 2016
Equals (1/2)*Sum_{n >= 0} n!*(3/2)^n/(Product_{k = 0..n} 3*k + 2) = (1/2)*Sum_{n >= 0} n!*(3/2)^n/A008544(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(3*k + 2)). - Peter Bala, Dec 01 2021
From Bernard Schott, Jan 28 2022: (Start)
Equals Integral_{x = 0..1} x/(1+ x^3) dx (see Rivaud reference).
Equals 3 * A196548. (End)
From Peter Bala, Mar 03 2024: (Start)
Equals (1/2)*hypergeom([2/3, 1], [5/3], -1).
Gauss's continued fraction: 1/(2 + 2^2/(5 + 3^2/(8 + 5^2/(11 + 6^2/(14 + 8^2/(17 + 9^2/(20 + 11^2/(23 + 12^2/(26 + ... ))))))))). (End)

A254322 Expansion of e.g.f.: (1-11*x)^(-10/11).

Original entry on oeis.org

1, 10, 210, 6720, 288960, 15603840, 1014249600, 77082969600, 6706218355200, 657209398809600, 71635824470246400, 8596298936429568000, 1126115160672273408000, 159908352815462823936000, 24465977980765812062208000, 4012420388845593178202112000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 28 2015

Keywords

Comments

Generally, for k > 1, if e.g.f. = (1-k*x)^(-(k-1)/k) then a(n) ~ n! * k^n / (n^(1/k) * Gamma((k-1)/k)).

Crossrefs

Sequences of the form k^n*Pochhammer((k-1)/k, n): A000007 (k=1), A001147 (k=2), A008544 (k=3), A008545 (k=4), A008546 (k=5), A008543 (k=6), A049209 (k=7), A049210 (k=8), A049211 (k=9), A049212 (k=10), this sequence (k=11), A346896 (k=12).

Programs

  • Magma
    m=11; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
    
  • Mathematica
    CoefficientList[Series[(1-11*x)^(-10/11), {x, 0, 20}], x] * Range[0, 20]!
    FullSimplify[Table[11^n * Gamma[n+10/11] / Gamma[10/11], {n, 0, 18}]]
  • Sage
    m=11; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022

Formula

D-finite with recurrence: a(0) = 1; a(n) = (11*n-1) * a(n-1) for n > 0. [corrected by Georg Fischer, Dec 23 2019]
a(n) = 11^n * Gamma(n+10/11) / Gamma(10/11).
a(n) ~ n! * 11^n / (n^(1/11) * Gamma(10/11)).
From Nikolaos Pantelidis, Jan 17 2021: (Start)
G.f.: 1/G(0) where G(k) = 1 - (22*k+10)*x - 11*(k+1)*(11*k+10)*x^2/G(k+1) (continued fraction).
G.f.: 1/(1-10*x-110*x^2/(1-32*x-462*x^2/(1-54*x-1056*x^2/(1-76*x-1892*x^2/(1-98*x-2970*x^2/(1-...)))))) (Jacobi continued fraction).
G.f.: 1/Q(0) where Q(k) = 1 - x*(11*k+10)/(1 - x*(11*k+11)/Q(k+1)) (continued fraction).
G.f.: 1/(1-10*x/(1-11*x/(1-21*x/(1-22*x/(1-32*x/(1-33*x/(1-43*x/(1-44*x/(1-54*x/(1-55*x/(1-...))))))))))) (Stieltjes continued fraction).
(End)
G.f.: hypergeometric2F0([1, 10/11], [--], 11*x). - G. C. Greubel, Feb 08 2022
Sum_{n>=0} 1/a(n) = 1 + (e/11)^(1/11)*(Gamma(10/11) - Gamma(10/11, 1/11)). - Amiram Eldar, Dec 22 2022
Previous Showing 31-40 of 79 results. Next