A225471
Triangle read by rows, s_4(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 3, 1, 21, 10, 1, 231, 131, 21, 1, 3465, 2196, 446, 36, 1, 65835, 45189, 10670, 1130, 55, 1, 1514205, 1105182, 290599, 36660, 2395, 78, 1, 40883535, 31354119, 8951355, 1280419, 101325, 4501, 105, 1, 1267389585, 1012861224, 308846124, 48644344, 4421494, 240856, 7756, 136, 1
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 3, 1,
[2] 21, 10, 1,
[3] 231, 131, 21, 1,
[4] 3465, 2196, 446, 36, 1,
[5] 65835, 45189, 10670, 1130, 55, 1,
[6] 1514205, 1105182, 290599, 36660, 2395, 78, 1.
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (4*4 - 1)*T(3, 2) = 131 +15*21 = 446.
Boas-Buck recurrence for column k=2 and n=4: T(4, 2) = (4!/2)*(4*(3+8*(5/12)) *T(2, 2)/2! + 1*(3 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(4*(19/3)/2 + 7*21/3!) = 446.
(End)
-
T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n - j, k]*Abs[StirlingS1[n, n - j]]* 3^(n - k - j)*4^j, {j, 0, n - k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Wolfdieter Lang *)
-
@CachedFunction
def SF_C(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return SF_C(n-1, k-1, m) + (m*n-1)*SF_C(n-1, k, m)
for n in (0..8): [SF_C(n, k, 4) for k in (0..n)]
A254322
Expansion of e.g.f.: (1-11*x)^(-10/11).
Original entry on oeis.org
1, 10, 210, 6720, 288960, 15603840, 1014249600, 77082969600, 6706218355200, 657209398809600, 71635824470246400, 8596298936429568000, 1126115160672273408000, 159908352815462823936000, 24465977980765812062208000, 4012420388845593178202112000
Offset: 0
Sequences of the form k^n*Pochhammer((k-1)/k, n):
A000007 (k=1),
A001147 (k=2),
A008544 (k=3),
A008545 (k=4),
A008546 (k=5),
A008543 (k=6),
A049209 (k=7),
A049210 (k=8),
A049211 (k=9),
A049212 (k=10), this sequence (k=11),
A346896 (k=12).
-
m=11; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-11*x)^(-10/11), {x, 0, 20}], x] * Range[0, 20]!
FullSimplify[Table[11^n * Gamma[n+10/11] / Gamma[10/11], {n, 0, 18}]]
-
m=11; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
A303487
a(n) = n! * [x^n] 1/(1 - 4*x)^(n/4).
Original entry on oeis.org
1, 1, 12, 231, 6144, 208845, 8648640, 422463195, 23781703680, 1515973484025, 107941254220800, 8491022274509775, 731304510986649600, 68444451854354701125, 6916953288171902976000, 750681472158682148959875, 87076954662428278259712000, 10751175443940144673035200625
Offset: 0
a(1) = 1;
a(2) = 2*6 = 12;
a(3) = 3*7*11 = 231;
a(4) = 4*8*12*16 = 6144;
a(5) = 5*9*13*17*21 = 208845, etc.
Cf.
A000407,
A001813,
A007696,
A008545,
A034176,
A034177,
A047053,
A051617,
A051618,
A051619,
A051620,
A051621,
A051622,
A113551,
A303486,
A303488.
-
Table[n! SeriesCoefficient[1/(1 - 4 x)^(n/4), {x, 0, n}], {n, 0, 17}]
Table[Product[4 k + n, {k, 0, n - 1}], {n, 0, 17}]
Table[4^n Pochhammer[n/4, n], {n, 0, 17}]
A143173
Partition number array, called M32(-3), related to A000369(n,m) = |S2(-3;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 3, 1, 21, 9, 1, 231, 84, 27, 18, 1, 3465, 1155, 630, 210, 135, 30, 1, 65835, 20790, 10395, 4410, 3465, 3780, 405, 420, 405, 45, 1, 1514205, 460845, 218295, 169785, 72765, 72765, 30870, 19845, 8085, 13230, 2835, 735, 945, 63, 1, 40883535, 12113640, 5530140, 4074840
Offset: 1
a(4,3)=27. The relevant partition of 4 is (2^2). The 12 unordered (0,2,0,0)-forests are composed of the following 2 rooted increasing trees 1--2,3--4; 1--3,2--4 and 1--4,2--3. The trees are ternary because r=1 vertices are ternary (3-ary) and for the leaves (r=0) the arity does not matter. Each of the three differently labeled forests comes therefore in 4 versions due to the two ternary root vertices.
A144280
Lower triangular array called S2hat(-3) related to partition number array A144279.
Original entry on oeis.org
1, 3, 1, 21, 3, 1, 231, 30, 3, 1, 3465, 294, 30, 3, 1, 65835, 4599, 321, 30, 3, 1, 1514205, 81081, 4788, 321, 30, 3, 1, 40883535, 1837836, 84483, 4869, 321, 30, 3, 1, 1267389585, 47609100, 1892835, 85050, 4869, 321, 30, 3, 1, 44358635475, 1449052605, 48681864
Offset: 1
Triangle begins:
[1];
[3,1];
[21,3,1];
[231,30,3,1];
[3465,294,30,3,1];
...
A346896
Expansion of e.g.f.: (1-12*x)^(-11/12).
Original entry on oeis.org
1, 11, 253, 8855, 416185, 24554915, 1743398965, 144702114095, 13746700839025, 1470896989775675, 175036741783305325, 22929813173612997575, 3278963283826658653225, 508239308993132091249875, 84875964601853059238729125, 15192797663731697603732513375
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7),
A049210 (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11), this sequence (m=12).
-
m:=12; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 16 2022
-
CoefficientList[Series[(1-12*x)^(-11/12),{x,0,20}], x] * Range[0, 20]!
FullSimplify[Table[12^n Gamma[n+11/12]/Gamma[11/12],{n,0,15}]] (* Stefano Spezia, Aug 07 2021 *)
-
m=12; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 16 2022
A352073
Expansion of e.g.f. 1/(1 - log(1 + 4*x))^(1/4).
Original entry on oeis.org
1, 1, 1, 17, 1, 1889, -12415, 631665, -11224575, 461864385, -13754112255, 596055636945, -24148300842495, 1181210529292065, -59009709972278655, 3297137505670374705, -193318225258785780735, 12263541239089421903745, -820804950905249837195775
Offset: 0
-
m = 18; Range[0, m]! * CoefficientList[Series[(1 - Log[1 + 4*x])^(-1/4), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+4*x))^(1/4)))
-
a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 1));
A049410
A triangle of numbers related to triangle A049325.
Original entry on oeis.org
1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
Offset: 1
Triangle begins:
{1};
{3,1};
{6,9,1};
{6,51,18,1};
...
E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
-
rows = 10;
t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
M = Inverse[Array[T, {rows, rows}]] // Abs;
A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
# uses[inverse_bell_transform from A265605]
# Adds a column 1,0,0,0,... at the left side of the triangle.
multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1))
inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015
A144758
Partial products of successive terms of A017197.
Original entry on oeis.org
1, 3, 36, 756, 22680, 884520, 42456960, 2420046720, 159723083520, 11979231264000, 1006255426176000, 93581754634368000, 9545338972705536000, 1059532625970314496000, 127143915116437739520000, 16401565050020468398080000, 2263415976902824638935040000
Offset: 0
a(0)=1, a(1)=3, a(2)=3*12=36, a(3)=3*12*21=756, a(4)=3*12*21*30=22680, ...
-
[Round(9^n*Gamma(n+1/3)/Gamma(1/3)): n in [0..20]]; // G. C. Greubel, Dec 03 2019
-
seq(9^n*pochhammer(1/3, n), n = 0..20); # G. C. Greubel, Dec 03 2019
-
Table[9^n*Pochhammer[1/3, n], {n, 0, 20}] (* G. C. Greubel, Dec 03 2019 *)
Join[{1},FoldList[Times,NestList[#+9&,3,20]]] (* Harvey P. Dale, Mar 09 2025 *)
-
a(n)=3^n*prod(i=1,n,3*i-2) \\ Charles R Greathouse IV, Jan 17 2012
-
[9^n*rising_factorial(1/3, n) for n in (0..20)] # G. C. Greubel, Dec 03 2019
A254286
Expansion of (1 - (1-256*x)^(1/4)) / (64*x).
Original entry on oeis.org
1, 96, 14336, 2523136, 484442112, 98180268032, 20645907791872, 4459516083044352, 983075545417777152, 220208922173582082048, 49967406340478261526528, 11459191854083014643417088, 2651480699775516003646046208, 618173786004806016850049630208
Offset: 0
-
[Round(2^(8*n)*Gamma(n+3/4)/(Gamma(3/4)*Gamma(n+2))): n in [0..30]]; // G. C. Greubel, Aug 10 2022
-
CoefficientList[Series[(1-(1-256*x)^(1/4)) / (64*x),{x,0,20}],x]
CoefficientList[Series[Hypergeometric1F1[3/4,2,256*x],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
[2^(8*n)*rising_factorial(3/4,n)/factorial(n+1) for n in (0..30)] # G. C. Greubel, Aug 10 2022
Previous
Showing 21-30 of 46 results.
Next
Comments