cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A250122 Coordination sequence for planar net 3.12.12.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Offset: 0

Views

Author

Darrah Chavey, Nov 23 2014

Keywords

Comments

Also, growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^6 = 1 >. See Magma program in A298805. - N. J. A. Sloane, Feb 06 2018

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Cf. A298805.

Programs

  • Mathematica
    Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)

Formula

From Joseph Myers, Nov 28 2014: (Start)
Empirically,
a(4n) = 10n - 2 except for a(0) = 1
a(4n+1) = 9n + 3
a(4n+2) = 8n + 6 except for a(2) = 4
a(4n+3) = 9n + 6. (End)
If these are correct, the sequence has g.f.
-(-1 - x - x^2 - 3*x^3 + x^4 - 5*x^5 + 3*x^6 - 4*x^7 + 2*x^8)/((x - 1)^2*(x^2 + 1)^2). - N. J. A. Sloane, Nov 28 2014
All the above conjectures are true. - N. J. A. Sloane, Dec 31 2015
E.g.f.: (9*x*cosh(x) - 4*(2*cos(x) + x^2 - 3) + 9*x*sinh(x) - (x - 3)*sin(x))/4. - Stefano Spezia, Jan 05 2023

Extensions

a(8) onwards from Maurizio Paolini and Joseph Myers (independently), Nov 28 2014

A072154 Coordination sequence for the planar net 4.6.12.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 15, 17, 19, 21, 24, 27, 29, 31, 33, 36, 39, 41, 43, 45, 48, 51, 53, 55, 57, 60, 63, 65, 67, 69, 72, 75, 77, 79, 81, 84, 87, 89, 91, 93, 96, 99, 101, 103, 105, 108, 111, 113, 115, 117, 120, 123, 125, 127, 129, 132, 135, 137
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There is only one type of node in this structure: each node meets a square, a hexagon and a 12-gon.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.
Also, coordination sequence for the aluminophosphate AlPO_4-5 structure.

References

  • A. V. Shutov, On the number of words of a given length in plane crystallographic groups (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, 188--197, 203; translation in J. Math. Sci. (N.Y.) 129 (2005), no. 3, 3922-3926 [MR2023041]. See Table 1, line "p6m" (but beware typos).

Crossrefs

For partial sums see A265078.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
See also A301730.

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 5, 7, 9, 12, 15}, 100]] (* Jean-François Alcover, Dec 13 2018 *)

Formula

Empirical g.f.: (x+1)^2*(x^2-x+1)*(x^2+x+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). - Colin Barker, Nov 18 2012
This empirical g.f. can also be written as (1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6)/(1 - x - x^5 + x^6). - N. J. A. Sloane, Dec 20 2015
Theorem: For n >= 7, a(n) = a(n-1) + a(n-5) - a(n-6), and a(5k) = 12k (k > 0), a(5k+m) = 12k + 2m + 1 (k >= 0, 1 <= m < 5). This also implies the conjectured g.f.'s. - N. J. A. Sloane, conjectured Dec 20 2015, proved Jan 20 2018.
Notes on the proof, from N. J. A. Sloane, Jan 20 2018 (Start)
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
The figure is divided into 6 sectors by the blue trunks. In the interior of each sector, working outwards from the base point P at the origin, there are successively 1,2,3,4,... (red) 12-gons. All the 12-gons (both red and blue) have a unique closest point to P.
If the closest point in a 12-gon is at distance d from P, then the contributions of the 12 points of the 12-gon to a(d), a(d+1), ..., a(d+6) are 1,2,2,2,2,2,1, respectively.
The rest of the proof is now a matter of simple counting.
The blue 12-gons (along the trunks) are especially easy to count, because there is a unique blue 12-gon at shortest distance d from P for d = 1,2,3,4,...
(End)
a(n) = 2*(6*n + sqrt(1 + 2/sqrt(5))*sin(2*n*Pi/5) + sqrt(1 - 2/sqrt(5))*sin(4*n*Pi/5))/5 for n > 0. - Stefano Spezia, Jan 05 2023

Extensions

More terms from Sean A. Irvine, Sep 29 2011
Thanks to Darrah Chavey for pointing out that this is the planar net 4.6.12. - N. J. A. Sloane, Nov 24 2014

A008706 Coordination sequence for 3.3.3.4.4 planar net.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002

Examples

			G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
		

Crossrefs

Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.

Programs

Formula

From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023

A296368 Coordination sequence for the Cairo or dual-3.3.4.3.4 tiling with respect to a trivalent point.

Original entry on oeis.org

1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, 73, 76, 79, 84, 89, 92, 95, 100, 105, 108, 111, 116, 121, 124, 127, 132, 137, 140, 143, 148, 153, 156, 159, 164, 169, 172, 175, 180, 185, 188, 191, 196, 201, 204, 207, 212, 217, 220, 223, 228
Offset: 0

Views

Author

N. J. A. Sloane, Dec 21 2017

Keywords

Comments

There are two types of point in this tiling. This is the coordination sequence with respect to a point of degree 3.
The coordination sequence with respect to a point of degree 4 (see second illustration) is simply 1, 4, 8, 12, 16, 20, ..., the same as the coordination sequence for the 4.4.4.4 square grid (A008574). See the CGS-NJAS link for the proof.

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Fig. 9.1.3, drawing P_5-24, page 480.
  • Herbert C. Moore, U.S. Patents 928,320 and 928,321, Patented July 20 1909. [Shows Cairo tiling.]

Crossrefs

For partial sums see A296909.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 8}, LinearRecurrence[{2, -2, 2, -1}, {12, 15, 20, 25}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    \\ See Links section.

Formula

The simplest formula is: a(0)=1, a(1)=2, a(2)=8, and thereafter a(n) = 4n if n is odd, 4n - 1 if n == 0 (mod 4), and 4n+1 if n == 2 (mod 4). (See the CGS-NJAS link for proof. - N. J. A. Sloane, May 10 2018)
a(n + 4) = a(n) + 16 for any n >= 3. - Rémy Sigrist, Dec 23 2017 (See the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 30 2017)
G.f.: -(x^6-x^5-2*x^4-4*x^2-x-1)/((x^2+1)*(x-1)^2).
From Colin Barker, Dec 23 2017: (Start)
a(n) = (8*n - (-i)^n - i^n) / 2 for n>2, where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>6.
(End)

Extensions

Terms a(8)-a(20) and RCSR link from Davide M. Proserpio, Dec 22 2017
More terms from Rémy Sigrist, Dec 23 2017

A161696 Number of reduced words of length n in the Weyl group B_3.

Original entry on oeis.org

1, 3, 5, 7, 8, 8, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

If the zeros are ignored, this is the coordination sequence for the truncated cuboctahedron (see the Karzes link). - N. J. A. Sloane, Jan 08 2020
Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=10; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..3]])/(1-t)^3)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..3),x,n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)), {k,1,3}] /(1-x)^3, {x,0,9}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^10); Vec(prod(k=1,3,1-t^(2*k))/(1-t)^3) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161699 Number of reduced words of length n in the Weyl group B_6.

Original entry on oeis.org

1, 6, 20, 50, 104, 190, 315, 484, 699, 958, 1255, 1580, 1919, 2254, 2565, 2832, 3037, 3166, 3210, 3166, 3037, 2832, 2565, 2254, 1919, 1580, 1255, 958, 699, 484, 315, 190, 104, 50, 20, 6, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..6]])/(1-t)^6)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..6),x,n+1), x, n), n = 0 .. 36); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) / (1 - x)^6, {x, 0, 50}], x]  (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,6,1-t^(2*k))/(1-t)^6) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161716 Number of reduced words of length n in the Weyl group B_7.

Original entry on oeis.org

1, 7, 27, 77, 181, 371, 686, 1170, 1869, 2827, 4082, 5662, 7581, 9835, 12399, 15225, 18242, 21358, 24464, 27440, 30162, 32510, 34376, 35672, 36336, 36336, 35672, 34376, 32510, 30162, 27440, 24464, 21358, 18242, 15225, 12399, 9835, 7581, 5662
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..7]])/(1-t)^7)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..7),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) / (1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^50); Vec(prod(k=1,7,1-t^(2*k))/(1-t)^7) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161717 Number of reduced words of length n in the Weyl group B_8.

Original entry on oeis.org

1, 8, 35, 112, 293, 664, 1350, 2520, 4389, 7216, 11298, 16960, 24541, 34376, 46775, 62000, 80241, 101592, 126029, 153392, 183373, 215512, 249202, 283704, 318171, 351680, 383270, 411984, 436913, 457240, 472281, 481520, 484636, 481520, 472281
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..8]])/(1-t)^8)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..8),x,65), x, n), n = 0 .. 64); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) / (1 - x)^8, {x, 0, 70}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,8,1-t^(2*k))/(1-t)^8) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161733 Number of reduced words of length n in the Weyl group B_9.

Original entry on oeis.org

1, 9, 44, 156, 449, 1113, 2463, 4983, 9372, 16588, 27886, 44846, 69387, 103763, 150538, 212538, 292779, 394371, 520399, 673783, 857121, 1072521, 1321430, 1604470, 1921291, 2270451, 2649332, 3054100, 3479715, 3919995, 4367735
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..9]])/(1-t)^9)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..9),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 -x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) / (1 - x)^9, {x, 0, 81}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,9,1-t^(2*k))/(1-t)^9) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161755 Number of reduced words of length n in the Weyl group B_10.

Original entry on oeis.org

1, 10, 54, 210, 659, 1772, 4235, 9218, 18590, 35178, 63064, 107910, 177297, 281060, 431598, 644136, 936915, 1331286, 1851685, 2525468, 3382588, 4455100, 5776486, 7380800, 9301642, 11570980, 14217849, 17266966, 20737309, 24640716, 28980565
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..10]])/(1-t)^10)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..10),x,101), x, n), n = 0 .. 100); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) (1 - x^20) / (1 - x)^10, {x, 0, 100}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,10,1-t^(2*k))/(1-t)^10) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Previous Showing 11-20 of 42 results. Next