A299258 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.6.12 2D tiling (cf. A072154).
1, 5, 13, 25, 41, 62, 89, 121, 157, 197, 242, 293, 349, 409, 473, 542, 617, 697, 781, 869, 962, 1061, 1165, 1273, 1385, 1502, 1625, 1753, 1885, 2021, 2162, 2309, 2461, 2617, 2777, 2942, 3113, 3289, 3469, 3653, 3842, 4037, 4237, 4441, 4649, 4862, 5081, 5305, 5533, 5765, 6002, 6245, 6493, 6745
Offset: 0
References
- B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #23.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Reticular Chemistry Structure Resource (RCSR), The fst tiling (or net)
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
Crossrefs
Cf. A072154.
Partial sums: A299264.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
Mathematica
LinearRecurrence[{2,-1,0,0,1,-2,1},{1,5,13,25,41,62,89,121},60] (* Harvey P. Dale, Mar 14 2023 *)
-
PARI
Vec((1 + x)^3*(1 - x + x^2)*(1 + x + x^2) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 09 2018
Formula
G.f.: (x^2+x+1)*(x^2-x+1)*(x+1)^3 / ((x^4+x^3+x^2+x+1)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>7. - Colin Barker, Feb 09 2018
a(n) ~ 12*n^2/5. - Stefano Spezia, Jun 06 2024
Comments