cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A250122 Coordination sequence for planar net 3.12.12.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Offset: 0

Views

Author

Darrah Chavey, Nov 23 2014

Keywords

Comments

Also, growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^6 = 1 >. See Magma program in A298805. - N. J. A. Sloane, Feb 06 2018

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
Cf. A298805.

Programs

  • Mathematica
    Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)

Formula

From Joseph Myers, Nov 28 2014: (Start)
Empirically,
a(4n) = 10n - 2 except for a(0) = 1
a(4n+1) = 9n + 3
a(4n+2) = 8n + 6 except for a(2) = 4
a(4n+3) = 9n + 6. (End)
If these are correct, the sequence has g.f.
-(-1 - x - x^2 - 3*x^3 + x^4 - 5*x^5 + 3*x^6 - 4*x^7 + 2*x^8)/((x - 1)^2*(x^2 + 1)^2). - N. J. A. Sloane, Nov 28 2014
All the above conjectures are true. - N. J. A. Sloane, Dec 31 2015
E.g.f.: (9*x*cosh(x) - 4*(2*cos(x) + x^2 - 3) + 9*x*sinh(x) - (x - 3)*sin(x))/4. - Stefano Spezia, Jan 05 2023

Extensions

a(8) onwards from Maurizio Paolini and Joseph Myers (independently), Nov 28 2014

A072154 Coordination sequence for the planar net 4.6.12.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 15, 17, 19, 21, 24, 27, 29, 31, 33, 36, 39, 41, 43, 45, 48, 51, 53, 55, 57, 60, 63, 65, 67, 69, 72, 75, 77, 79, 81, 84, 87, 89, 91, 93, 96, 99, 101, 103, 105, 108, 111, 113, 115, 117, 120, 123, 125, 127, 129, 132, 135, 137
Offset: 0

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Comments

There is only one type of node in this structure: each node meets a square, a hexagon and a 12-gon.
The coordination sequence with respect to a particular node gives the number of nodes that can be reached from that node in n steps along edges.
Also, coordination sequence for the aluminophosphate AlPO_4-5 structure.

References

  • A. V. Shutov, On the number of words of a given length in plane crystallographic groups (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, 188--197, 203; translation in J. Math. Sci. (N.Y.) 129 (2005), no. 3, 3922-3926 [MR2023041]. See Table 1, line "p6m" (but beware typos).

Crossrefs

For partial sums see A265078.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
See also A301730.

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 5, 7, 9, 12, 15}, 100]] (* Jean-François Alcover, Dec 13 2018 *)

Formula

Empirical g.f.: (x+1)^2*(x^2-x+1)*(x^2+x+1)/((x-1)^2*(x^4+x^3+x^2+x+1)). - Colin Barker, Nov 18 2012
This empirical g.f. can also be written as (1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + x^6)/(1 - x - x^5 + x^6). - N. J. A. Sloane, Dec 20 2015
Theorem: For n >= 7, a(n) = a(n-1) + a(n-5) - a(n-6), and a(5k) = 12k (k > 0), a(5k+m) = 12k + 2m + 1 (k >= 0, 1 <= m < 5). This also implies the conjectured g.f.'s. - N. J. A. Sloane, conjectured Dec 20 2015, proved Jan 20 2018.
Notes on the proof, from N. J. A. Sloane, Jan 20 2018 (Start)
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
The figure is divided into 6 sectors by the blue trunks. In the interior of each sector, working outwards from the base point P at the origin, there are successively 1,2,3,4,... (red) 12-gons. All the 12-gons (both red and blue) have a unique closest point to P.
If the closest point in a 12-gon is at distance d from P, then the contributions of the 12 points of the 12-gon to a(d), a(d+1), ..., a(d+6) are 1,2,2,2,2,2,1, respectively.
The rest of the proof is now a matter of simple counting.
The blue 12-gons (along the trunks) are especially easy to count, because there is a unique blue 12-gon at shortest distance d from P for d = 1,2,3,4,...
(End)
a(n) = 2*(6*n + sqrt(1 + 2/sqrt(5))*sin(2*n*Pi/5) + sqrt(1 - 2/sqrt(5))*sin(4*n*Pi/5))/5 for n > 0. - Stefano Spezia, Jan 05 2023

Extensions

More terms from Sean A. Irvine, Sep 29 2011
Thanks to Darrah Chavey for pointing out that this is the planar net 4.6.12. - N. J. A. Sloane, Nov 24 2014

A298808 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^4 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 6, 3, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Comments

This group is finite, so the growth series is a polynomial.
Coordination sequence for truncated cube (see Karzes link). The coordination sequence for the cuboctahedron is 1,4,6,1, which is too short to have its own entry. - N. J. A. Sloane, Nov 20 2019

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.

A008706 Coordination sequence for 3.3.3.4.4 planar net.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275
Offset: 0

Views

Author

Keywords

Comments

Also the Engel expansion of exp^(1/5); cf. A006784 for the Engel expansion definition. - Benoit Cloitre, Mar 03 2002

Examples

			G.f. = 1 + 5*x + 10*x^2 + 15*x^3 + 20*x^4 + 25*x^5 + 30*x^6 + 35*x^7 + ...
		

Crossrefs

Cf. A006784, A048476 (binomial Transf.)
Essentially the same as A008587.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
First differences of A005891.

Programs

Formula

From Paul Barry, Jul 21 2003: (Start)
G.f.: (1 + 3*x + x^2)/(1 - x)^2.
a(n) = 0^n + 5n. (End)
G.f.: A(x) + 1, where A(x) is the g.f. of A008587. - Gennady Eremin, Feb 21 2021
E.g.f.: 1 + 5*x*exp(x). - Stefano Spezia, Jan 05 2023

A296368 Coordination sequence for the Cairo or dual-3.3.4.3.4 tiling with respect to a trivalent point.

Original entry on oeis.org

1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, 73, 76, 79, 84, 89, 92, 95, 100, 105, 108, 111, 116, 121, 124, 127, 132, 137, 140, 143, 148, 153, 156, 159, 164, 169, 172, 175, 180, 185, 188, 191, 196, 201, 204, 207, 212, 217, 220, 223, 228
Offset: 0

Views

Author

N. J. A. Sloane, Dec 21 2017

Keywords

Comments

There are two types of point in this tiling. This is the coordination sequence with respect to a point of degree 3.
The coordination sequence with respect to a point of degree 4 (see second illustration) is simply 1, 4, 8, 12, 16, 20, ..., the same as the coordination sequence for the 4.4.4.4 square grid (A008574). See the CGS-NJAS link for the proof.

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Fig. 9.1.3, drawing P_5-24, page 480.
  • Herbert C. Moore, U.S. Patents 928,320 and 928,321, Patented July 20 1909. [Shows Cairo tiling.]

Crossrefs

For partial sums see A296909.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 8}, LinearRecurrence[{2, -2, 2, -1}, {12, 15, 20, 25}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    \\ See Links section.

Formula

The simplest formula is: a(0)=1, a(1)=2, a(2)=8, and thereafter a(n) = 4n if n is odd, 4n - 1 if n == 0 (mod 4), and 4n+1 if n == 2 (mod 4). (See the CGS-NJAS link for proof. - N. J. A. Sloane, May 10 2018)
a(n + 4) = a(n) + 16 for any n >= 3. - Rémy Sigrist, Dec 23 2017 (See the CGS-NJAS link for a proof. - N. J. A. Sloane, Dec 30 2017)
G.f.: -(x^6-x^5-2*x^4-4*x^2-x-1)/((x^2+1)*(x-1)^2).
From Colin Barker, Dec 23 2017: (Start)
a(n) = (8*n - (-i)^n - i^n) / 2 for n>2, where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>6.
(End)

Extensions

Terms a(8)-a(20) and RCSR link from Davide M. Proserpio, Dec 22 2017
More terms from Rémy Sigrist, Dec 23 2017

A298026 Coordination sequence of Dual(3.6.3.6) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 6, 18, 12, 30, 18, 42, 24, 54, 30, 66, 36, 78, 42, 90, 48, 102, 54, 114, 60, 126, 66, 138, 72, 150, 78, 162, 84, 174, 90, 186, 96, 198, 102, 210, 108, 222, 114, 234, 120, 246, 126, 258, 132, 270, 138, 282, 144, 294, 150, 306, 156, 318, 162, 330, 168, 342, 174, 354, 180, 366, 186, 378, 192, 390
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A298027 (partial sums), A298028 (trivalent point).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 3*n else 6*n; fi; end;
    [seq(f6(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {6, 6, 18, 12}, 80]] (* Jean-François Alcover, Mar 23 2020 *)
  • PARI
    Vec((1 + 6*x + 4*x^2 + 6*x^3 + x^4) / ((1 - x)^2*(1 + x)^2) + O(x^60)) \\ Colin Barker, Jan 22 2018

Formula

a(0)=1; a(2*k)=6*k, a(2*k+1)=12*k+6.
G.f.: 1 + 6*x*(1+x+x^2)/(1-x^2)^2. - Robert Israel, Jan 21 2018
From Colin Barker, Jan 22 2018: (Start)
a(n) = 3*n for n>0 and even.
a(n) = 6*n for n odd.
a(n) = 2*a(n-2) - a(n-4) for n>4.
(End)
a(n) = 6*A026741(n), n>0. - R. J. Mathar, Jan 29 2018

A298028 Coordination sequence of Dual(3.6.3.6) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 12, 9, 24, 15, 36, 21, 48, 27, 60, 33, 72, 39, 84, 45, 96, 51, 108, 57, 120, 63, 132, 69, 144, 75, 156, 81, 168, 87, 180, 93, 192, 99, 204, 105, 216, 111, 228, 117, 240, 123, 252, 129, 264, 135, 276, 141, 288, 147, 300, 153, 312, 159, 324, 165, 336, 171, 348, 177, 360, 183, 372, 189, 384, 195
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A135556 (partial sums), A298026 (trivalent point).
If the initial 1 is changed to 0 we get A165988 (but we need both sequences, just as we have both A008574 and A008586).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f3:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 6*n else 3*n; fi; end;
    [seq(f3(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {3, 12, 9, 24}, 80]] (* Jean-François Alcover, Mar 23 2020 *)

Formula

a(0)=1; a(2*k) = 12*k, a(2*k+1) = 6*k+3.
G.f.: 1 + 3*x*(x^2+4*x+1)/(1-x^2)^2. - Robert Israel, Jan 21 2018
a(n) = 3*A022998(n), n>0. - R. J. Mathar, Jan 29 2018

A298802 Growth series for group with presentation < S, T : S^4 = T^4 = (S*T)^4 = 1 >.

Original entry on oeis.org

1, 4, 10, 24, 56, 128, 294, 676, 1552, 3564, 8186, 18800, 43176, 99160, 227734, 523020, 1201184, 2758676, 6335658, 14550664, 33417496, 76747632, 176260934, 404806196, 929690160, 2135154556, 4903660570, 11261895264, 25864409480, 59400985544, 136422101046, 313311125788, 719559813184
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Cf. A008579.

Programs

  • Magma
    R := RationalFunctionField(Integers());
    PSR25 := PowerSeriesRing(Integers():Precision := 25);
    FG := FreeGroup(2);
    TG := quo;
    f, A :=IsAutomaticGroup(TG);
    gf := GrowthFunction(A);
    R!gf;
    Coefficients(PSR25!gf);
    
  • Mathematica
    LinearRecurrence[{2,0,2,-1},{1,4,10,24,56},40] (* Harvey P. Dale, Jan 02 2020 *)
  • PARI
    Vec((1 + x)^2*(1 + x^2) / (1 - 2*x - 2*x^3 + x^4) + O(x^40)) \\ Colin Barker, Feb 04 2018

Formula

G.f.: (1 + x)^2*(1 + x^2) / (1 - 2*x - 2*x^3 + x^4).
a(n) = 2*a(n-1) + 2*a(n-3) - a(n-4) for n>4. - Colin Barker, Feb 04 2018

A298805 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^7 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 22, 24, 34, 40, 56, 62, 83, 98, 133, 152, 202, 236, 322, 368, 496, 570, 776, 892, 1202, 1384, 1871, 2158, 2915, 3352, 4534, 5218, 7060, 8120, 10976, 12636, 17084, 19664, 26580, 30592, 41367, 47604, 64365, 74072, 100152, 115264, 155836, 179352, 242488, 279076, 377324, 434246, 587126
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    // To get the growth function for the group with presentation
    // < S, T | S^a = T^b = (S*I)^c = 1 >
    a:=2; b:=3; c:=7;
    R := RationalFunctionField(Integers());
    PSR := PowerSeriesRing(Integers():Precision := 100);
    FG := FreeGroup(2);
    TG := quo;
    f, A :=IsAutomaticGroup(TG);
    gf := GrowthFunction(A);
    R!gf;
    Coefficients(PSR!gf);
    
  • Mathematica
    LinearRecurrence[{-1,0,0,1,2,1,0,1,0,1,2,1,0,0,-1,-1},{1,3,4,6,8,12,16,22,24,34,40,56,62,83,98,133,152,202,236},60] (* Harvey P. Dale, Jun 15 2021 *)
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 15*x^5 + 17*x^6 + 21*x^7 + 21*x^8 + 21*x^9 + 21*x^10 + 19*x^11 + 15*x^12 + 12*x^13 + 9*x^14 + 6*x^15 + 3*x^16 - 2*x^17 - 2*x^18) / ((1 + x + x^2 + x^3 + x^4)*(1 - x^2 - x^4 + x^6 - x^8 - x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^18 - 2*x^17 + 3*x^16 + 6*x^15 + 9*x^14 + 12*x^13 + 15*x^12 + 19*x^11 + 21*x^10 + 21*x^9 + 21*x^8 + 21*x^7 + 17*x^6 + 15*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^16 + x^15 - x^12 - 2*x^11 - x^10 - x^8 - x^6 - 2*x^5 - x^4 + x + 1).
The denominator can be factored: G.f. also = -(2*x^18 + 2*x^17 - 3*x^16 - 6*x^15 - 9*x^14 - 12*x^13 - 15*x^12 - 19*x^11 - 21*x^10 - 21*x^9 - 21*x^8 - 21*x^7 - 17*x^6 - 15*x^5 - 13*x^4 - 10*x^3 - 7*x^2 - 4*x - 1) / ((x^4 + x^3 + x^2 + x + 1) * (x^12 - x^10 - x^8 + x^6 - x^4 - x^2 + 1)).
a(n) = -a(n-1) + a(n-4) + 2*a(n-5) + a(n-6) + a(n-8) + a(n-10) + 2*a(n-11) + a(n-12) - a(n-15) - a(n-16) for n>18. - Colin Barker, Feb 06 2018

A068600 Number of n-uniform tilings having n different arrangements of polygons about their vertices.

Original entry on oeis.org

11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Brian Galebach, Mar 28 2002

Keywords

Comments

Sequence gives the number of edge-to-edge regular-polygon tilings having n topologically distinct vertex types, with each vertex type having a different arrangement of surrounding polygons. Does not allow for tilings with two or more vertex types having the same arrangement of surrounding polygons, even when those vertices are topologically distinct. There are no 8- or higher-uniform tilings having the equivalent number of distinct polygon arrangements.
There are eleven 1-uniform tilings (also called the "Archimedean" tessellations) which comprise the three regular tessellations (all triangles, squares, or hexagons) plus the eight semiregular tessellations. (See A250120. - N. J. A. Sloane, Nov 29 2014)

References

  • This sequence was originally calculated by Otto Krotenheerdt.
  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, page 69.
  • Krotenheerdt, Otto. "Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene," Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-natur. Reihe, 18(1969), 273-290; 19 (1970)19-38 and 97-122.

Crossrefs

Cf. A068599.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
Previous Showing 11-20 of 34 results. Next