cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A180597 Digital root of 7n.

Original entry on oeis.org

0, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8
Offset: 0

Views

Author

Odimar Fabeny, Sep 10 2010

Keywords

Comments

Period of 9. - Robert G. Wilson v, Sep 20 2010

Crossrefs

Programs

Formula

G.f.: x*(7 + 5*x + 3*x^2 + x^3 + 8*x^4 + 6*x^5 + 4*x^6 + 2*x^7 + 9*x^8)/(1 - x^9). - Stefano Spezia, Apr 21 2022
a(n) = A010888(A008589(n)). - Michel Marcus, Apr 21 2022

Extensions

More terms from Robert G. Wilson v, Sep 20 2010

A212702 Main transitions in systems of n particles with spin 7/2.

Original entry on oeis.org

7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=8 (see formula), corresponding to spin S=(b-1)/2=7/2.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212701, A212703, A212704 (b = 2, 3, 4, 5, 6, 7, 9, 10).

Programs

  • Mathematica
    LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
    
  • PARI
    Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=8.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 16*a(n-1) - 64*a(n-2) for n > 2.
G.f.: 7*x/(8*x-1)^2. (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 7*x*exp(8*x).
a(n) = 7*A053539(n) = A008589(n)*A001018(n-1). (End)

A225327 Partition numbers of the form 7k.

Original entry on oeis.org

7, 42, 56, 77, 231, 385, 490, 1575, 2436, 3010, 10143, 21637, 31185, 37338, 44583, 124754, 147273, 281589, 329931, 386155, 451276, 1121505, 3087735, 8118264, 9289091, 20506255, 23338469, 49995925, 118114304, 133230930, 271248950, 607163746
Offset: 1

Views

Author

Omar E. Pol, May 05 2013

Keywords

Comments

Intersection of A008589 and A000041.

Examples

			42 is in the sequence because 7*6 = 42 and 42 is a partition number: p(10) = A000041(10) = 42.
		

Crossrefs

Programs

  • Mathematica
    Select[PartitionsP[Range[300]], Mod[#, 7] == 0 &]

Formula

a(n) = 7*A222175(n).

A028898 Map n = Sum c_i 10^i to a(n) = Sum c_i 3^i.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 21, 22, 23, 24, 25, 26, 27
Offset: 0

Views

Author

Keywords

Comments

If n is a multiple of 7, then a(n) is also a multiple of 7. See the Bhattacharyya link. - Michel Marcus, May 11 2016

Crossrefs

Cf. A008589 (multiples of 7).
Different from A081502 for n>=100.

Programs

  • Maple
    a:= proc(n) option remember;   n mod 10 + 3*procname(floor(n/10))
    end proc:
    a(0):= 0:
    seq(a(i),i=0..100); # Robert Israel, May 11 2016
  • Mathematica
    a = {1}; Do[AppendTo[a, If[Mod[n, 10] == 0, 3 a[[n/10]], a[[n - 1]] + 1]], {n, 2, 76}]; {0}~Join~a (* Michael De Vlieger, May 10 2016 *)
  • PARI
    a(n)=if(n<1,0,if(n%10,a(n-1)+1,3*a(n/10)))
    
  • PARI
    a(n) = subst(Pol(digits(n)), x, 3); \\ Michel Marcus, May 10 2016

Formula

a(0)=0, a(n)=3*a(n/10) if n==0 (mod 10), a(n)=a(n-1)+1 otherwise. - Benoit Cloitre, Dec 21 2002
G.f.: G(x) = (1-x)^(-1) * Sum_{i>=0} 3^i*p(x^(10^i)) where p(t) = (t+2*t^2+3*t^3+4*t^4+5*t^5+6*t^6+7*t^7+8*t^8+9*t^9)/(1+t+t^2+t^3+t^4+t^5+t^6+t^7+t^8+t^9) satisfies (1-x)*G(x) = p(x) + 3*(1-x^10)*G(x^10). - Robert Israel, May 11 2016

Extensions

More terms from Erich Friedman
Moved Wesley Ivan Hurt's formula to A081502 where it applies. - Kevin Ryde, Dec 03 2019

A113803 Numbers that are congruent to {3, 11} mod 14.

Original entry on oeis.org

3, 11, 17, 25, 31, 39, 45, 53, 59, 67, 73, 81, 87, 95, 101, 109, 115, 123, 129, 137, 143, 151, 157, 165, 171, 179, 185, 193, 199, 207, 213, 221, 227, 235, 241, 249, 255, 263, 269, 277, 283, 291, 297, 305, 311, 319, 325, 333, 339, 347, 353, 361, 367
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    {3+#,11+#}&/@(14*Range[0,30])//Flatten (* Harvey P. Dale, Jun 28 2020 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 3). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7-(-1)^n)/2.
O.g.f.: x*(3+8*x+3*x^2)/((1+x)*(1-x)^2).
See the Bruno Berselli contribution under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(3*Pi/14)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cot(3*Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = sin(Pi/7)*cosec(3*Pi/14). (End)

A113802 Numbers that are congruent to {2, 12} mod 14.

Original entry on oeis.org

2, 12, 16, 26, 30, 40, 44, 54, 58, 68, 72, 82, 86, 96, 100, 110, 114, 124, 128, 138, 142, 152, 156, 166, 170, 180, 184, 194, 198, 208, 212, 222, 226, 236, 240, 250, 254, 264, 268, 278, 282, 292, 296, 306, 310, 320, 324, 334, 338, 348, 352, 362, 366, 376, 380
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[400],MemberQ[{2,12},Mod[#,14]]&] (* Harvey P. Dale, Oct 30 2011 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 2). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7-3*(-1)^n)/2.
O.g.f.: 2*x*(1+5*x+x^2)/((1+x)*(1-x)^2).
See the contribution of Bruno Berselli under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(Pi/7)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(Pi/7)*sin(3*Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(Pi/7)*sin(Pi/14). (End)

A113805 Numbers that are congruent to {5, 9} mod 14.

Original entry on oeis.org

5, 9, 19, 23, 33, 37, 47, 51, 61, 65, 75, 79, 89, 93, 103, 107, 117, 121, 131, 135, 145, 149, 159, 163, 173, 177, 187, 191, 201, 205, 215, 219, 229, 233, 243, 247, 257, 261, 271, 275, 285, 289, 299, 303, 313, 317, 327, 331, 341, 345, 355, 359, 369
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[14n + {5, 9}, {n, 0, 28}]] (* Alonso del Arte, Dec 15 2011 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 5). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7+3*(-1)^n)/2.
O.g.f.: x*(5+4*x+5*x^2)/((1+x)*(1-x)^2).
See the Bruno Berselli contribution under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(Pi/7)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 4*sin(Pi/7)*sin(3*Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/7). (End)

A113806 Numbers that are congruent to {6, 8} mod 14.

Original entry on oeis.org

6, 8, 20, 22, 34, 36, 48, 50, 62, 64, 76, 78, 90, 92, 104, 106, 118, 120, 132, 134, 146, 148, 160, 162, 174, 176, 188, 190, 202, 204, 216, 218, 230, 232, 244, 246, 258, 260, 272, 274, 286, 288, 300, 302, 314, 316, 328, 330, 342, 344, 356, 358, 370
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[# + {6, 8} &/@ (14 Range[0, 30])] (* Harvey P. Dale, Jan 11 2011 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 6). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7+5*(-1)^n)/2.
O.g.f.: 2*x*(3+x+3*x^2)/((1+x)*(1-x)^2).
See the Bruno Berselli contribution under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(Pi/14)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(Pi/7)*cosec(3*Pi/14)/4. (End)

A047382 Numbers that are congruent to {0, 5} mod 7.

Original entry on oeis.org

0, 5, 7, 12, 14, 19, 21, 26, 28, 33, 35, 40, 42, 47, 49, 54, 56, 61, 63, 68, 70, 75, 77, 82, 84, 89, 91, 96, 98, 103, 105, 110, 112, 117, 119, 124, 126, 131, 133, 138, 140, 145, 147, 152, 154, 159, 161, 166, 168
Offset: 1

Views

Author

Keywords

Comments

Except for the first term, numbers m such that 36*m^2 + 72*m + 35 = (6*m+5)*(6*m+7) is not of the form p*(p+2), with p prime. - Vincenzo Librandi, Aug 05 2010
Nonnegative k such that k or 4*k + 1 is divisible by 7. - Bruno Berselli, Feb 13 2018

Crossrefs

Programs

  • Magma
    &cat[[7*n,7*n+5]: n in [0..23]];  // Bruno Berselli, Oct 17 2011
    
  • Mathematica
    {#, 5 + #} &/@ (7 Range[0, 30]) // Flatten (* or *) LinearRecurrence[{1, 1, -1}, {0, 5, 7}, 60] (* Harvey P. Dale, Dec 01 2016 *)
  • PARI
    a(n) = (14*n + 3*(-1)^n - 11)/4 \\ David Lovler, Sep 11 2022

Formula

a(n) = 7*n - a(n-1) - 9 for n>1, with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=5 and b(k)=A005009(k-1)=7*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x^2*(5 + 2*x)/((1 + x)*(1 - x)^2).
a(n) = (14*n + 3*(-1)^n - 11)/4.
a(-n) = -A047352(n+2). (End)
a(n) = ceiling((7/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
E.g.f.: 2 + ((14*x - 11)*exp(x) + 3*exp(-x))/4. - David Lovler, Sep 11 2022

A072750 Counting factor 7 in the first n squarefree numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2002

Keywords

Examples

			The first 10 squarefree numbers are: 1, 2, 3, 5, 6=2*3, 7, 10=2*5, 11, 13 and 14=2*7: 7 and 14 are divisible by 7, therefore a(10)=2.
		

Crossrefs

Programs

  • Haskell
    a072750 n = a072750_list !! (n-1)
    a072750_list = scanl1 (+) $ map ((0 ^) . (`mod` 7)) a005117_list
    -- Reinhard Zumkeller, Mar 25 2013
    
  • Maple
    N:= 1000: # to use the squarefree numbers <= N
    M:= map(proc(t) if numtheory:-issqrfree(t) then if t mod 7 = 0 then 1 else 0 fi fi end proc, [$1..N]):
    ListTools:-PartialSums(M); # Robert Israel, Aug 23 2015
  • Mathematica
    With[{sf=Select[Range[200],SquareFreeQ]},Accumulate[If[Divisible[#,7],1,0]&/@sf]] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    n = 94; k = 0; bag = List(); a = vector(n);
    until(n == 0, k++; if (issquarefree(k), listput(bag, k); n--));
    for (i=2, #bag, a[i] = a[i-1] + (bag[i] % 7 == 0));
    print(a); \\ Gheorghe Coserea, Aug 23 2015

Formula

a(n) - a(n-1) = 1 if A005117(n) is in A008589, otherwise 0. - Robert Israel, Aug 23 2015
a(n) ~ n/8. - Amiram Eldar, Feb 24 2021

Extensions

Name clarified by Gheorghe Coserea, Aug 23 2015
Previous Showing 31-40 of 81 results. Next