cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 81 results. Next

A127545 Multiples of 7, k, such that k +/- 1 are twin primes.

Original entry on oeis.org

42, 420, 462, 882, 1050, 1092, 1302, 1428, 1722, 1932, 2142, 2268, 2310, 2688, 2730, 3360, 3528, 3822, 4158, 4242, 4788, 5418, 5502, 5880, 6090, 6132, 6300, 6552, 6762, 7308, 7350, 7560, 8232, 8820, 8862, 9240, 9282, 10038, 10332, 10458, 10500, 10710
Offset: 1

Views

Author

Zak Seidov, Apr 01 2007

Keywords

Crossrefs

Intersection of A008589 and A014574.

Programs

  • Mathematica
    Select[Range[7,10710,7],PrimeQ[#-1]&&PrimeQ[#+1]&] (* James C. McMahon, Jan 01 2025 *)
    Select[7 Range[2000],AllTrue[#+{1,-1},PrimeQ]&] (* Harvey P. Dale, Aug 16 2025 *)
  • PARI
    a(n) = !(n %7) && isprime(n+1) && isprime(n-1); \\ Michel Marcus, Oct 11 2013

Extensions

Name edited by James C. McMahon, Jan 01 2025

A217009 Multiples of 7 in base 8.

Original entry on oeis.org

7, 16, 25, 34, 43, 52, 61, 70, 77, 106, 115, 124, 133, 142, 151, 160, 167, 176, 205, 214, 223, 232, 241, 250, 257, 266, 275, 304, 313, 322, 331, 340, 347, 356, 365, 374, 403, 412, 421, 430, 437, 446, 455, 464, 473, 502, 511, 520, 527, 536, 545, 554, 563
Offset: 1

Views

Author

Jon Perry, Sep 23 2012

Keywords

Comments

Digit sum is always divisible by 7.
Reinterpreting this sequence in base 10, these are numbers of the form 9n + 7 but with all numbers containing 8s and/or 9s removed. - Alonso del Arte, Sep 23 2012

Examples

			a(10) = 106 because 7 * 10 = 70, or 1 * 8^2 + 0 * 8^1 + 6 * 8^0 = 64 + 6 = 106_8.
		

Crossrefs

Programs

  • JavaScript
    k = 7;
    for (i = 1; i <= 200; i++) {
    x = i * k;
    document.write(x.toString(k + 1) + ", ");
    }
  • Mathematica
    Table[BaseForm[7*n, 8], {n, 100}] (* Alonso del Arte, Sep 23 2012 *)
    Select[9*Range[0, 99] + 7, DigitCount[#, 10, 8] == 0 && DigitCount[#, 10, 9] == 0 &] (* Alonso del Arte, Sep 23 2012 *)
    Table[FromDigits[IntegerDigits[7*n, 8]], {n, 100}] (* T. D. Noe, Sep 24 2012 *)

Formula

a(n) = A007094(A008589(n)). -

A274824 Triangle read by rows: T(n,k) = (n-k+1)*sigma(k), n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 3, 3, 6, 4, 4, 9, 8, 7, 5, 12, 12, 14, 6, 6, 15, 16, 21, 12, 12, 7, 18, 20, 28, 18, 24, 8, 8, 21, 24, 35, 24, 36, 16, 15, 9, 24, 28, 42, 30, 48, 24, 30, 13, 10, 27, 32, 49, 36, 60, 32, 45, 26, 18, 11, 30, 36, 56, 42, 72, 40, 60, 39, 36, 12, 12, 33, 40, 63, 48, 84, 48, 75, 52, 54, 24, 28, 13, 36, 44, 70, 54, 96, 56, 90, 65, 72, 36, 56, 14
Offset: 1

Views

Author

Omar E. Pol, Oct 02 2016

Keywords

Comments

Theorem: for any sequence S the partial sums of the partial sums are also the antidiagonal sums of the square array in which the n-th row gives n times the sequence S. Therefore they are also the row sums of the triangular array in which the n-th diagonal gives n times the sequence S.
In this case the sequence S is A000203.
The n-th diagonal of this triangle gives n times A000203.
The row sums give A175254 which gives the partial sums of A024916 which gives the partial sums of A000203.
T(n,k) is also the total number of unit cubes that are exactly below the terraces of the k-th level (starting from the top) up the base of the stepped pyramid with n levels described in A245092. This fact is because the mentioned terraces have the same shape as the symmetric representation of sigma(k). For more information see A237593 and A237270.
In the definition of this sequence the value n-k+1 is also the height of the terraces associated to sigma(k) in the mentioned pyramid with n levels, or in other words, the distance between the mentioned terraces and the base of the pyramid.
The sum of the n-th row of triangle equals the volume (also the number of cubes) of the mentioned pyramid with n levels.
For an illustration of the pyramid, see the Links section.
The sum of the n-th row is also 1/4 of the volume of the stepped pyramid described in A244050 with n levels.
Column k lists the positive multiples of sigma(k).
The k-th term in the n-th diagonal is equal to n*sigma(k).
Note that this is also a square array read by antidiagonals upwards: T(i,j) = i*sigma(j), i>=1, j>=1. The first row of the array is A000203. So consider that the pyramid is upside down. The value of "i" is the distance between the base of the pyramid and the terraces associated to sigma(j). The antidiagonal sums give the partial sums of the partial sums of A000203.

Examples

			Triangle begins:
1;
2,  3;
3,  6,  4;
4,  9,  8,  7;
5,  12, 12, 14, 6;
6,  15, 16, 21, 12, 12;
7,  18, 20, 28, 18, 24,  8;
8,  21, 24, 35, 24, 36,  16, 15;
9,  24, 28, 42, 30, 48,  24, 30,  13;
10, 27, 32, 49, 36, 60,  32, 45,  26,  18;
11, 30, 36, 56, 42, 72,  40, 60,  39,  36,  12;
12, 33, 40, 63, 48, 84,  48, 75,  52,  54,  24, 28;
13, 36, 44, 70, 54, 96,  56, 90,  65,  72,  36, 56,  14;
14, 39, 48, 77, 60, 108, 64, 105, 78,  90,  48, 84,  28, 24;
15, 42, 52, 84, 66, 120, 72, 120, 91,  108, 60, 112, 42, 48, 24;
16, 45, 56, 91, 72, 132, 80, 135, 104, 126, 72, 140, 56, 72, 48, 31;
...
For n = 16 and k = 10 the sum of the divisors of 10 is 1 + 2 + 5 + 10 = 18, and 16 - 10 + 1 = 7, and 7*18 = 126, so T(16,10) = 126.
On the other hand, the symmetric representation of sigma(10) has two parts of 9 cells, giving a total of 18 cells. In the stepped pyramid described in A245092, with 16 levels, there are 16 - 10 + 1 = 7 cubes exactly below every cell of the symmetric representation of sigma(10) up the base of pyramid; hence the total numbers of cubes exactly below the terraces of the 10th level (starting from the top) up the base of the pyramid is equal to 7*18 = 126. So T(16,10) = 126.
The sum of the 16th row of the triangle is 16 + 45 + 56 + 91 + 72 + 132 + 80 + 135 + 104 + 126 + 72 + 140 + 56 + 72 + 48 + 31 = A175254(16) = 1276, equaling the volume (also the number of cubes) of the stepped pyramid with 16 levels described in A245092 (see Links section).
		

Crossrefs

Row sums of triangle give A175254.
Column 1 is A000027.
Initial zeros should be omitted in the following sequences related to the columns of triangle:
Columns 2-5: A008585, A008586, A008589, A008588.
Columns 6 and 11: A008594.
Columns 7-9: A008590, A008597, A008595.
Columns 10 and 17: A008600.
Columns 12-13: A135628, A008596.
Columns 14, 15 and 23: A008606.
Columns 16 and 25: A135631.
(There are many other OEIS sequences that are also columns of this triangle.)

Formula

T(n,k) = (n-k+1) * A000203(k).
T(n,k) = A004736(n,k) * A245093(n,k).

A085708 Arithmetic derivative of 10^n.

Original entry on oeis.org

0, 7, 140, 2100, 28000, 350000, 4200000, 49000000, 560000000, 6300000000, 70000000000, 770000000000, 8400000000000, 91000000000000, 980000000000000, 10500000000000000, 112000000000000000, 1190000000000000000, 12600000000000000000, 133000000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 19 2003

Keywords

Comments

a(n) = A003415(A011557(n)) = A008589(n)*A011557(n-1).

Crossrefs

Programs

Formula

a(n) = 7*n*10^(n-1).
G.f.: 7*x/(10*x-1)^2.

A154684 Triangle read by rows where T(m,n)=2mn + m + n - 3, 1<=n<=m.

Original entry on oeis.org

1, 4, 9, 7, 14, 21, 10, 19, 28, 37, 13, 24, 35, 46, 57, 16, 29, 42, 55, 68, 81, 19, 34, 49, 64, 79, 94, 109, 22, 39, 56, 73, 90, 107, 124, 141, 25, 44, 63, 82, 101, 120, 139, 158, 177, 28, 49, 70, 91, 112, 133, 154, 175, 196, 217, 31, 54, 77, 100, 123, 146, 169
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

2*T(m,n)+7 = (2n+1)*(2m+1) is not prime.
First column: A016777; second column: A016897; third column: A008589; fourth column: A017173. - Vincenzo Librandi, Nov 19 2012

Examples

			Triangle begins:
1;
4,  9;
7,  14, 21;
10, 19, 28, 37;
13, 24, 35, 46, 57;
16, 29, 42, 55, 68,  81;
19, 34, 49, 64, 79,  94,  109;
22, 39, 56, 73, 90,  107, 124, 141;
25, 44, 63, 82, 101, 120, 139, 158, 177;
28, 49, 70, 91, 112, 133, 154, 175, 196, 217; etc.
		

Crossrefs

Programs

  • Magma
    [(2*n*k + n + k - 3): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 19 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k - 3; Table[t[n, k], {n, 20}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 19 2012 *)

A168374 a(n) = 7 * floor(n/2).

Original entry on oeis.org

0, 7, 7, 14, 14, 21, 21, 28, 28, 35, 35, 42, 42, 49, 49, 56, 56, 63, 63, 70, 70, 77, 77, 84, 84, 91, 91, 98, 98, 105, 105, 112, 112, 119, 119, 126, 126, 133, 133, 140, 140, 147, 147, 154, 154, 161, 161, 168, 168, 175, 175, 182, 182, 189, 189, 196, 196, 203, 203, 210
Offset: 1

Views

Author

Vincenzo Librandi, Nov 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 0 else 7*n-Self(n-1)-7: n in [1..70]]; // Vincenzo Librandi, Sep 17 2013
  • Mathematica
    CoefficientList[Series[7 x/((1 + x) (1 - x)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 17 2013 *)
    Table[7 Floor[n/2], {n, 60}] (* Bruno Berselli, Sep 18 2013 *)

Formula

a(n) = 7*n - a(n-1) - 7, with n>1, a(1)=0.
G.f.: 7*x^2/((1+x)*(1-x)^2). - Bruno Berselli, Sep 17 2013
a(n) = 7*A004526(n). - Bruno Berselli, Sep 17 2013
E.g.f.: (7/2)*(x*cosh(x) + (x - 1)*sinh(x)). - G. C. Greubel, Jul 19 2016

Extensions

New definition by Bruno Berselli, Sep 18 2013

A176972 a(n) = 7^n + 7*n + 1.

Original entry on oeis.org

2, 15, 64, 365, 2430, 16843, 117692, 823593, 5764858, 40353671, 282475320, 1977326821, 13841287286, 96889010499, 678223072948, 4747561510049, 33232930569714, 232630513987327, 1628413597910576, 11398895185373277, 79792266297612142, 558545864083284155, 3909821048582988204
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2010

Keywords

Examples

			a(5) = 7^5 + 7*5 + 1 = 16843 is prime.
		

Crossrefs

Programs

  • Magma
    [7^n + 7*n + 1: n in [0..25]]; // Vincenzo Librandi, May 06 2011
  • Mathematica
    Table[7^n+7n+1,{n,0,20}] (* or *) LinearRecurrence[{9,-15,7},{2,15,64},20] (* Harvey P. Dale, Apr 17 2014 *)

Formula

a(n) = A000420(n) + A008589(n) + 1 = A000420(n) + A016993(n).
a(n) = 7*a(n-1) - 42*(n-1) + 1, with n > 0. For n=5, a(5) = 7*2430 - 42*4 + 1 = 16843. - Bruno Berselli, May 18 2010
From R. J. Mathar, May 22 2010: (Start)
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
G.f.: (-2 + 3*x + 41*x^2) / ((7*x-1)*(x-1)^2). (End)
E.g.f.: exp(x)*(1 + exp(6*x) + 7*x). - Stefano Spezia, Aug 19 2024

A220528 a(n) = n^7 + 7*n + 7^n.

Original entry on oeis.org

1, 15, 191, 2551, 18813, 94967, 397627, 1647135, 7862009, 45136639, 292475319, 1996813991, 13877119093, 96951759015, 678328486451, 4747732369423, 33233199005169, 232630924325999, 1628414210130607, 11398896079245015, 79792267577612141, 558545865884372695
Offset: 0

Views

Author

Jonathan Vos Post, Dec 15 2012

Keywords

Examples

			a(1) = 1^7 + 7*1 + 7^1 = 15.
a(2) = 2^7 + 7*2 + 7^2 = 191.
		

Crossrefs

Programs

  • Mathematica
    Table[n^7 + 7*n + 7^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *)
  • Maxima
    makelist(n^7 + 7*n + 7^n,n,0,20); /* Martin Ettl, Jan 15 2013 */

Formula

a(n) = A001015(n) + A008589(n) + A000420(n).
G.f.: (55*x^8+546*x^7+8966*x^6+14692*x^5+6726*x^4-694*x^3-50*x^2-1) / ((x-1)^8*(7*x-1)). - Colin Barker, May 09 2013

A258188 Smallest multiple of 7 not appearing earlier that ends with n.

Original entry on oeis.org

21, 42, 63, 14, 35, 56, 7, 28, 49, 210, 511, 112, 413, 714, 315, 616, 217, 518, 119, 420, 721, 322, 623, 224, 525, 126, 427, 728, 329, 630, 231, 532, 133, 434, 735, 336, 637, 238, 539, 140, 441, 742, 343, 644, 245, 546, 147, 448, 749, 350, 651, 252, 553, 154
Offset: 1

Views

Author

Keywords

Comments

a(10*n) = 10*a(n).
The sequence is a permutation of the positive multiples of 7. - Vladimir Shevelev, May 24 2015
A258329(n) = a(n) / 7 is a permutation of the positive integers. - Reinhard Zumkeller, May 27 2015

Crossrefs

Programs

  • Haskell
    import Data.List (isPrefixOf, delete)
    a258188 n = a258188_list !! (n-1)
    a258188_list = f 1 $ tail $ zip
       a008589_list $ map (reverse . show) a008589_list where
       f x ws = g ws where
         g ((u, vs) : uvs) = if isPrefixOf xs vs
                             then u : f (x + 1) (delete (u, vs) ws) else g uvs
         xs = reverse $ show x
  • Mathematica
    a[n_] := a[n] = For[k = 7, True, k = k + 7, If[Divisible[k - n, 10^IntegerLength[n]] && FreeQ[Array[a, n-1], k], Return[k]]]; Array[a, 54] (* Jean-François Alcover, Feb 07 2018 *)

A258217 Smallest multiple of 7 starting with n, that did not appear earlier.

Original entry on oeis.org

14, 21, 35, 42, 56, 63, 7, 84, 91, 105, 112, 126, 133, 140, 154, 161, 175, 182, 196, 203, 210, 224, 231, 245, 252, 266, 273, 28, 294, 301, 315, 322, 336, 343, 350, 364, 371, 385, 392, 406, 413, 420, 434, 441, 455, 462, 476, 483, 49, 504, 511, 525, 532, 546
Offset: 1

Views

Author

Keywords

Comments

The sequence is a permutation of the positive multiples of 7. - Vladimir Shevelev, May 24 2015
A258334(n) = a(n) / 7 is a permutation of the positive integers. - Reinhard Zumkeller, May 27 2015

Crossrefs

Programs

  • Haskell
    import Data.List (isPrefixOf, delete)
    a258217 n = a258217_list !! (n-1)
    a258217_list = f 1 $ tail $ zip a008589_list $ map show a008589_list where
       f x ws = g ws where
         g ((u, vs) : uvs) = if isPrefixOf (show x) vs
                             then u : f (x + 1) (delete (u, vs) ws) else g uvs
  • Mathematica
    a[1] = 14; a[n_] := a[n] = For[dn = IntegerDigits[n]; k = 7, True, k = k+7, dk = IntegerDigits[k]; lg = Min[Length[dn], Length[dk]]; If[Union[ Take[dk, lg] - Take[dn, lg]] == {0} && FreeQ[Array[a, n-1], k], Return[k]]]; Array[a, 54] (* Jean-François Alcover, Feb 09 2018 *)
Previous Showing 41-50 of 81 results. Next