A058395
Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.
Original entry on oeis.org
1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0
The array T(n, k) starts:
[0] 1, 0, 3, 0, 6, 0, 10, 0, 15, 0, ...
[1] 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...
[2] 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...
[3] 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
[4] 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
[5] 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, ...
[6] 1, 6, 18, 38, 66, 102, 146, 198, 258, 326, ...
[7] 1, 7, 24, 56, 104, 168, 248, 344, 456, 584, ...
[8] 1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
The triangle
A055252 also appears in half of the array.
-
gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
-
T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)
A189980
a(n) is the number of incongruent two-color bracelets of n beads, 10 from them are black (A005515), having a diameter of symmetry.
Original entry on oeis.org
1, 1, 6, 6, 21, 21, 56, 56, 126, 126, 252, 252, 462, 462, 792, 792, 1287, 1287, 2002, 2002, 3003, 3003, 4368, 4368, 6188, 6188, 8568, 8568, 11628, 11628, 15504, 15504, 20349, 20349, 26334, 26334, 33649, 33649
Offset: 10
- Hansraj Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 964-999.
- V. Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], 2007-2011.
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
A242279
Number of inequivalent (mod D_4) ways four checkers can be placed on an n X n board.
Original entry on oeis.org
1, 23, 252, 1666, 7509, 26865, 79920, 209096, 491425, 1064575, 2150076, 4104738, 7458437, 13005041, 21857984, 35598880, 56353185, 87019191, 131364700, 194364050, 282314901, 403316353, 567402672, 787201416, 1078078209, 1459020095, 1952782300, 2587048786, 3394568325
Offset: 2
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1).
-
CoefficientList[Series[x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5), {x, 0, 20}], x] (* Vaclav Kotesovec, May 10 2014 *)
LinearRecurrence[{4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1},{0,0,1,23,252,1666,7509,26865,79920,209096,491425,1064575,2150076,4104738},40] (* Harvey P. Dale, May 06 2018 *)
A242358
Number of inequivalent (mod D_4) ways five checkers can be placed on an n X n board.
Original entry on oeis.org
23, 567, 6814, 47358, 239511, 954226, 3207212, 9414828, 24862239, 60136329, 135311658, 286229762, 574460495, 1101240084, 2028333848, 3605765688, 6211552455, 10402472811, 16984387958, 27099325638, 42342870823, 64905898662, 97761436356, 144885584740, 211543443215
Offset: 3
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-4,-20,40,16,-100,44,110,-110,-44,100,-16,-40,20,4,-5,1).
-
Drop[CoefficientList[Series[x^3*(-23 - 452*x - 4071*x^2 - 16016*x^3 - 40397*x^4 - 59335*x^5 - 61954*x^6 - 38236*x^7 - 17221*x^8 - 3614*x^9 - 623*x^10 + 20*x^11 + x^12 + x^13)/((x-1)^11*(x+1)^6), {x, 0, 20}], x],3] (* Vaclav Kotesovec, May 11 2014 *)
A330641
a(n) is the number of partitions of n with Durfee square of size <= 3.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 230, 295, 380, 480, 607, 758, 943, 1161, 1426, 1733, 2100, 2525, 3023, 3595, 4261, 5017, 5888, 6874, 7996, 9258, 10687, 12281, 14073, 16066, 18288, 20747, 23478, 26482, 29801, 33442, 37441, 41811, 46596, 51801, 57478, 63639, 70329, 77567
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-3,0,6,0,-3,-2,1,2,-1).
A064349
Generating function: 1/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4).
Original entry on oeis.org
1, 1, 3, 6, 13, 19, 37, 58, 97, 143, 227, 328, 492, 688, 992, 1364, 1903, 2551, 3473, 4586, 6097, 7911, 10333, 13226, 16988, 21454, 27172, 33938, 42437, 52423, 64833, 79354, 97130, 117824, 142930, 172018, 206925, 247179, 295105, 350154, 415124
Offset: 0
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 2, 1, 0, -9, -5, 2, 13, 21, -4, -17, -30, -13, 25, 28, 25, -13, -30, -17, -4, 21, 13, 2, -5, -9, 0, 1, 2, 1, -1).
-
a(n) = floor( ([13, 28, -44][n%3+1]+(9/2)*(n\3+2)*((n+1)%3-1)) * (n\3+1)/729 - (n\2+1)*(-1)^(n\2) * (3*[-8, 11]+(n\2+2)*(2*[-1, 3]+(n\2+3)*(1/3)*[0, 1]))[n%2+1]/512 + (2*n^9 +270*n^8 +15600*n^7 +504000*n^6 +9977730*n^5 +124629750*n^4 +973069200*n^3 +4521339000*n^2 +11137512613*n +16461579435 +5103*(n+15)*(2*n^4 +120*n^3 +2440*n^2 +19200*n +48213)*(-1)^n) / 20065812480 ) \\ Tani Akinari, Jul 12 2013
-
Vec(1/((1-x)*(1-x^2)^2*(1-x^3)^3*(1-x^4)^4)+O(x^66)) \\ Joerg Arndt, Jul 11 2013
A157898
Triangle read by rows: inverse binomial transform of A059576.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 0, 2, 2, 4, 1, 2, 6, 4, 8, 0, 3, 6, 16, 8, 16, 1, 3, 12, 16, 40, 16, 32, 0, 4, 12, 40, 40, 96, 32, 64, 1, 4, 20, 40, 120, 96, 224, 64, 128, 0, 5, 20, 80, 120, 336, 224, 512, 128, 256
Offset: 0
First few rows of the triangle =
1;
0, 1;
1, 1, 2;
0, 2, 2, 4;
1, 2, 6, 4, 8;
0, 3, 6, 16, 8, 16;
1, 3, 12, 16, 40, 16, 32;
0, 4, 12, 40, 40, 96, 32, 64;
1, 4, 20, 40, 120, 96, 224, 64, 128;
0, 5, 20, 80, 120, 336, 224, 512, 128, 256;
...
-
A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
function t(n, k) // t = A059576
if k eq 0 or k eq n then return A011782(n);
else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1);
end if; return t;
end function;
A157898:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*t(j,k): j in [k..n]]) >;
[A157898(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 03 2022
-
A059576 := proc (n, k)
if n = 0 then
return 1;
end if;
if k <= n and k >= 0 then
add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k))
else
0 ;
end if
end proc:
A157898 := proc(n,k)
add ( A130595(n,j)*A059576(j,k),j=k..n) ;
end proc: # R. J. Mathar, Feb 13 2013
-
t[n_, k_]:= t[n, k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1, k-1] + 2*t[n-1, k] -(2 -Boole[n==2])*t[n-2, k-1]]; (* t= A059576 *)
A157898[n_, k_]:= A157898[n, k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}];
Table[A157898[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 03 2022 *)
-
@CachedFunction
def t(n, k): # t = A059576
if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782
else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1)
def A157898(n,k): return sum((-1)^(n-j)*binomial(n,j)*t(j,k) for j in (k..n))
flatten([[A157898(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 03 2022
A211534
Number of ordered triples (w,x,y) with all terms in {1,...,n} and w = 3x + 3y.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 6, 6, 6, 10, 10, 10, 15, 15, 15, 21, 21, 21, 28, 28, 28, 36, 36, 36, 45, 45, 45, 55, 55, 55, 66, 66, 66, 78, 78, 78, 91, 91, 91, 105, 105, 105, 120, 120, 120, 136, 136, 136, 153, 153, 153, 171, 171, 171, 190, 190, 190, 210
Offset: 0
Cf.
A211422,
A008805 (w = 2x + 2y and doubly repeated triangular numbers).
-
[Floor(n/3)*(Floor(n/3)-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 05 2015
-
[n le 7 select Floor(n/7) else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+ Self(n-7): n in [1..70]]; // Vincenzo Librandi, Apr 05 2015
-
A211534:=n->floor(n/3)*(floor(n/3)-1)/2: seq(A211534(n), n=0..100); # Wesley Ivan Hurt, Apr 05 2015
-
t[n_] := t[n] = Flatten[Table[-w + 3 x + 3 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 70}] (* A211534 *)
FindLinearRecurrence[t]
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 0, 0, 0, 1}, 70] (* Vincenzo Librandi, Apr 05 2015 *)
-
concat([0,0,0,0,0,0], Vec(-x^6/((x-1)^3*(x^2+x+1)^2) + O(x^100))) \\ Colin Barker, Feb 17 2015
A247976
Triangle read by rows: T(n,k) generated by m-gon expansions in the case of odd m with "vertex to vertex" version or even m with "vertex to side" version. (See comment for details.)
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 2;
1, 2, 1, 2;
1, 2, 1, 3, 3;
1, 3, 3, 1, 3, 3;
1, 3, 3, 1, 4, 6, 4;
1, 4, 6, 4, 1, 4, 6, 4;
1, 4, 6, 4, 1, 5, 10, 10, 5;
1, 5, 10, 10, 5, 1, 5, 10, 10, 5;
...
-
T[n_, k_]:= T[n, k]= If[k==1, 1, If[k==n, Floor[(n+1)/2], If[OddQ[n], If[k<=(n+ 1)/2, T[n-1, k], T[n-1, k-1] + T[n-1, k]], If[kG. C. Greubel, Feb 18 2022 *)
-
@CachedFunction
def T(n,k): # A247976
if (k==1): return 1
elif (k==n): return (n+1)//2
elif (n%2==1): return T(n-1,k) if (k <= (n+1)/2) else T(n-1,k-1) + T(n-1,k)
else: return T(n-1,k-1)+T(n-1,k) if (k < (n+2)/2) else T(n,k-n/2)
flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Feb 18 2022
A317575
Irregular triangle read by rows: T(n,k) is the number of n X n tic-tac-toe positions (up to rotation and reflection) with k tokens (i.e., after k plays) which occur in a game (n > 0, 0 <= k <= n^2).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 0, 1, 3, 12, 38, 108, 174, 204, 153, 57, 15, 1, 3, 33, 219, 1413, 5514, 20122, 50215, 112379, 179510, 245690, 245690, 193318, 110452, 41870, 10489, 1059, 1, 6, 85, 904, 9664, 66859
Offset: 1
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9
----+---------------------------------------
1 | 1 1
2 | 1 1 2 2 0
3 | 1 3 12 38 108 174 204 153 57 15
Comments