cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A358161 a(n) is the permanent of the n X n matrix M(n) that is defined by M[i,j] = ceiling(i*j/3).

Original entry on oeis.org

1, 1, 3, 19, 434, 18142, 1138592, 131646240, 22247821152, 4990553682336, 1661493079305216, 729074911776673536, 397903630707426852864, 290086114501734871449600, 262660633302518916820992000, 284075108357948520100761600000, 385808192325346588875691868160000, 626209817056857125529475382231040000
Offset: 0

Views

Author

Stefano Spezia, Nov 01 2022

Keywords

Comments

The matrix M(n) is the n-th principal submatrix of the rectangular array A143977.
det(M(n)) = 1 for n <= 3, and otherwise det(M(n)) = 0.

Examples

			a(5) = 18142:
    1  1  1  2  2
    1  2  2  3  4
    1  2  3  4  5
    2  3  4  6  7
    2  4  5  7  9
		

Crossrefs

Cf. A143977.
Cf. A008810 (matrix element M[n,n]), A070333 (trace of M(n+1)), A358162 (hafnian of M(2*n)).

Programs

  • Mathematica
    a[n_]:=Permanent[Table[Ceiling[i j/3],{i,n},{j,n}]]; Join[{1},Array[a,17]]
  • Python
    from fractions import Fraction
    from sympy import Matrix
    def A358161(n): return Matrix(n,n,[Fraction(i*j,3)._ceil_() for i in range(1,n+1) for j in range(1,n+1)]).per() if n else 1 # Chai Wah Wu, Nov 02 2022

A222170 a(n) = n^2 + 2*floor(n^2/3).

Original entry on oeis.org

0, 1, 6, 15, 26, 41, 60, 81, 106, 135, 166, 201, 240, 281, 326, 375, 426, 481, 540, 601, 666, 735, 806, 881, 960, 1041, 1126, 1215, 1306, 1401, 1500, 1601, 1706, 1815, 1926, 2041, 2160, 2281, 2406, 2535, 2666, 2801, 2940, 3081, 3226, 3375, 3526, 3681, 3840
Offset: 0

Views

Author

Bruno Berselli, Aug 08 2013

Keywords

Comments

Also, a(n) = n^2 + floor(2*n^2/3), since 2*floor(n^2/3) = floor(2*n^2/3).

Crossrefs

Subsequence of A008851.
Cf. A004773 (numbers of the type n+floor(n/3)), A008810 (numbers of the type n^2-2*floor(n^2/3)), A047220 (numbers of the type n+floor(2*n/3)), A184637 (numbers of the type n^2+floor(n^2/3), except the first two).

Programs

  • Magma
    [n^2+2*Floor(n^2/3): n in [0..50]];
    
  • Magma
    I:=[0,1,6,15,26]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-3)-2*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Table[n^2 + 2 Floor[n^2/3], {n, 0, 50}]
    CoefficientList[Series[x (1 + x) (1 + 3 x + x^2) / ((1 + x + x^2) (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{2, -1, 1, -2, 1}, {0, 1, 6, 15, 26}, 50] (* Hugo Pfoertner, Jan 17 2023 *)

Formula

G.f.: x*(1+x)*(1 + 3*x + x^2)/((1 + x + x^2)*(1-x)^3).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = floor(5*n^2/3). - Wesley Ivan Hurt, Mar 16 2015
a(n) = a(n-3) + 5*(2n-3) [Tadeusz Dorozinski]. - Eduard Baumann, Jan 18 2023

A329583 Numerators of 1 + n^2/4 + period 3: repeat [-1, 1, 1].

Original entry on oeis.org

0, 6, 3, 12, 6, 30, 9, 54, 18, 84, 27, 126, 36, 174, 51, 228, 66, 294, 81, 366, 102, 444, 123, 534, 144, 630, 171, 732, 198, 846, 225, 966, 258, 1092, 291, 1230, 324, 1374, 363, 1524, 402, 1686, 441, 1854, 486, 2028, 531, 2214, 576, 2406, 627
Offset: 0

Views

Author

Paul Curtz, Nov 17 2019

Keywords

Comments

First bisection is 3*A008810.

Crossrefs

Programs

  • Mathematica
    MapIndexed[#1 - 2 Boole[Mod[First@ #2, 3] == 1] + 1 &, CoefficientList[Series[(1 + 5 x - x^2 - 2 x^3 + 2 x^4 + 5 x^5)/(1 - x^2)^3, {x, 0, 44}], x]] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    concat(0, Vec(3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Nov 24 2019

Formula

a(n) = A261327(n) + A131561(n+2) = (n^2 + 4)*(5 - 3*(-1)^n)/8 + (-1)^((n+1) mod 3).
From Colin Barker, Nov 24 2019: (Start)
G.f.: 3*x*(2 + 3*x + x^2 - 2*x^3 + x^4 + 3*x^5 + 2*x^6) / ((1 - x)^3*(1 + x)^3*(1 + x + x^2)).
a(n) = -a(n-1) + 2*a(n-2) + 3*a(n-3) - 3*a(n-5) - 2*a(n-6) + a(n-7) + a(n-8) for n>8. (End)

Extensions

Incorrect 129 replaced with 123 by Colin Barker, Nov 24 2019

A358162 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i,j] = ceiling(i*j/3).

Original entry on oeis.org

1, 1, 11, 530, 71196, 18680148, 8825763888, 6969574132560, 8223753750015600, 14043461354695317600, 33726601900489760438400
Offset: 0

Views

Author

Stefano Spezia, Nov 01 2022

Keywords

Comments

The matrix M(n) is the n-th principal submatrix of the rectangular array A143977.

Examples

			a(2) = 11:
    1  1  1  2
    1  2  2  3
    1  2  3  4
    2  3  4  6
		

Crossrefs

Cf. A143977.
Cf. A008810 (matrix element M[n,n]), A070333 (trace of M(n)), A358161 (permanent of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_]:=Part[Part[Table[Ceiling[r*c/3], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
  • PARI
    tm(n) = matrix(n, n, i, j, ceil((i*j)/3));
    a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023

Extensions

a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023

A365539 Array read by ascending antidiagonals: A(n,k) = [x^n] (1 + x^k)/((1 - x)^2*(1 - x^k)), with k > 0.

Original entry on oeis.org

1, 4, 1, 9, 2, 1, 16, 5, 2, 1, 25, 8, 3, 2, 1, 36, 13, 6, 3, 2, 1, 49, 18, 9, 4, 3, 2, 1, 64, 25, 12, 7, 4, 3, 2, 1, 81, 32, 17, 10, 5, 4, 3, 2, 1, 100, 41, 22, 13, 8, 5, 4, 3, 2, 1, 121, 50, 27, 16, 11, 6, 5, 4, 3, 2, 1, 144, 61, 34, 21, 14, 9, 6, 5, 4, 3, 2, 1
Offset: 0

Views

Author

Stefano Spezia, Sep 08 2023

Keywords

Examples

			Array begins:
   1,  1,  1,  1,  1,  1,  1, ...
   4,  2,  2,  2,  2,  2,  2, ...
   9,  5,  3,  3,  3,  3,  3, ...
  16,  8,  6,  4,  4,  4,  4, ...
  25, 13,  9,  7,  5,  5,  5, ...
  36, 18, 12, 10,  8,  6,  6, ...
  49, 25, 17, 13, 11,  9,  7, ...
  64, 32, 22, 16, 14, 12, 10, ...
  ...
		

Crossrefs

Cf. A000027 (main diagonal and superdiagonals), A000290 (k=1), A000982 (k=2), A008810 (k=3), A008811 (k=4), A008812 (k=5), A008813 (k=6), A008814 (k=7), A008815 (k=8), A008816 (k=9), A008817 (k=10).
Cf. A365540 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=SeriesCoefficient[(1+x^k)/((1-x)^2*(1-x^k)),{x,0,n}]; Table[A[n-k,k],{n,0,12},{k,n}]//Flatten

A378763 Lower matching number for the n X n torus grid graph.

Original entry on oeis.org

3, 6, 9, 12, 17, 22, 27, 34, 42, 48, 58, 67, 75, 87
Offset: 3

Views

Author

Eric W. Weisstein, Dec 06 2024

Keywords

Comments

a(18) = 108.
Seems to be either A008810(n) = ceil(n^2/3) or A008810(n)+1.
For known terms, a(n) is one more than A008810(n) for n = 11, 13, 14, 16.

Crossrefs

Cf. A008810 (ceil(n^2/3)).
Cf. A280984 (lower matching number for the n X n grid graph).

Programs

  • Mathematica
    Table[Min[Length /@ FindIndependentVertexSet[LineGraph @ GraphProduct[CycleGraph[n], CycleGraph[n], "Cartesian"], Infinity, All]], {n, 3, 5}]

Formula

a(n) = n^2/3 if 3|n, otherwise a(n) >= A008810(n). [Proof: let the [minimum] maximal independent edge set be E. Let b be the number of edges between two vertices incident to different edges from E. The total number of edges connecting a vertex incident to an edge from E and a vertex not incident to any edge from E is equal to 4(n^2-2a(n)) but also to 6a(n)-2b; equalising these, we find b = 7a(n)-2n^2. Also, a(n) <= b, which gives the desired inequality a(n) >= n^2/3.] - Andrey Zabolotskiy, Dec 19 2024

A343953 Square array T(n,k), n>=1, k>=0, read by antidiagonals, where row n is the expansion of x*(1+x^n)/((1-x)^2*(1-x^n)).

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 0, 1, 2, 9, 0, 1, 2, 5, 16, 0, 1, 2, 3, 8, 25, 0, 1, 2, 3, 6, 13, 36, 0, 1, 2, 3, 4, 9, 18, 49, 0, 1, 2, 3, 4, 7, 12, 25, 64, 0, 1, 2, 3, 4, 5, 10, 17, 32, 81, 0, 1, 2, 3, 4, 5, 8, 13, 22, 41, 100, 0, 1, 2, 3, 4, 5, 6, 11, 16, 27, 50, 121, 0, 1, 2, 3, 4, 5, 6, 9, 14, 21, 34, 61, 144
Offset: 0

Views

Author

Keywords

Examples

			Square array begins:
0, 1, 4, 9,16,25,36,49,64,81,100,121,   ... (A000290)
0, 1, 2, 5, 8,13,18,25,32,41, 50, 61,   ... (A000982)
0, 1, 2, 3, 6, 9,12,17,22,27, 34, 41,   ... (A008810)
0, 1, 2, 3, 4, 7,10,13,16,21, 26, 31,   ... (A008811)
0, 1, 2, 3, 4, 5, 8,11,14,17, 20, 25,   ... (A008812)
0, 1, 2, 3, 4, 5, 6, 9,12,15, 18, 21,   ... (A008813)
0, 1, 2, 3, 4, 5, 6, 7,10,13, 16, 19,   ... (A008814)
0, 1, 2, 3, 4, 5, 6, 7, 8,11, 14, 17,   ... (A008815)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15,   ... (A008816)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13,   ... (A008817)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14,... not in the OEIS
...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15;
    ro[n_] := ro[n] = CoefficientList[x(1+x^n)/((1-x)^2 (1-x^n))+O[x]^nmax, x];
    T[n_, k_] := ro[n][[k+1]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}]  // Flatten

Formula

G.f. of row n: x*(1+x^n)/((1-x)^2*(1-x^n)), some cross-referenced sequences omitting the factor x and the initial term 0.

A371154 Maximum number of vertices for a given diameter n of a Cayley digraph on the cyclic group with generators s=1 and t>s.

Original entry on oeis.org

1, 3, 5, 8, 11, 16, 21, 26, 33, 40, 47, 56, 65, 74, 85, 96, 107, 120, 133, 146, 161, 176, 191, 208, 225, 242, 261, 280, 299, 320, 341, 362, 385, 408, 431, 456, 481, 506, 533, 560, 587
Offset: 0

Views

Author

Miquel A. Fiol, Mar 13 2024

Keywords

Examples

			For n=10, the maximum number of vertices a(n)=47 is obtained, for instance, with the Cayley digraph Cay(47;1,11).
		

Crossrefs

Essentially A008810 - 1.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x - x^4 + 2*x^5 - x^6)/((1 - x)^3*(1 + x + x^2)),{x,0,40}],x] (* or *) Join[{1,3},Table[Ceiling[(n+2)^2/3]-1, {n,2,40}]] (* James C. McMahon, Apr 04 2024 *)

Formula

a(n) = ceiling((n+2)^2/3)-1 for n<>1.
G.f.: (1 + x - x^4 + 2*x^5 - x^6)/((1 - x)^3*(1 + x + x^2)). - Stefano Spezia, Mar 13 2024
Previous Showing 21-28 of 28 results.