A317365
Expansion of e.g.f. x*exp(x/(1 + x))/(1 + x).
Original entry on oeis.org
0, 1, 0, -3, 16, -75, 336, -1295, 1632, 55881, -1124000, 16722981, -229985040, 3089923837, -41225160144, 545880027225, -7069180940864, 86130735547665, -882387869940288, 3847692639294541, 171852333163131600, -8392137456287472699, 276055495385982856720, -8067943451470397940543
Offset: 0
-
[n eq 0 select 0 else (-1)^(n+1)*Factorial(n)*Evaluate(LaguerrePolynomial(n-1, 0), 1): n in [0..25]]; // G. C. Greubel, Mar 05 2021
-
a:= proc(n) option remember; add((-1)^(n-k)*
n!/(k-1)!*binomial(n-1, k-1), k=1..n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2018
-
nmax = 23; CoefficientList[Series[x Exp[x/(1 + x)]/(1 + x) , {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] n!/(k - 1)!, {k, n}], {n, 0, 23}]
Join[{0}, Table[(-1)^(n+1) n! LaguerreL[n-1, 1], {n, 23}]]
-
a(n) = (-1)^(n+1)*n!*pollaguerre(n-1,0,1); \\ Michel Marcus, Mar 06 2021
-
[0 if n==0 else (-1)^(n+1)*factorial(n)*gen_laguerre(n-1, 0, 1) for n in (0..25)] # G. C. Greubel, Mar 05 2021
A331325
a(n) = n!*[x^n] cosh(x/(1-x))/(1-x).
Original entry on oeis.org
1, 1, 3, 15, 97, 745, 6571, 65359, 723969, 8842257, 118091251, 1712261551, 26786070433, 449634481465, 8059974923547, 153634497337455, 3102367733191681, 66145005096272929, 1484586887025099619, 34983117545622446287, 863397428225495045601, 22269844592814969946761
Offset: 0
-
gf := cosh(x/(1 - x))/(1 - x): ser := series(gf, x, 22):
seq(n!*coeff(ser, x, n), n=0..21);
# Alternative: seq(add(abs(A021009(n, 2*k)), k=0..n/2), n=0..21);
A331325 := proc(n) local S; S := proc(n, k) option remember; `if`(k = 0, 1,
`if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*add(S(n, 2*k), k=0..n) end:
seq(A331325(n), n=0..21);
-
a[n_] := n! HypergeometricPFQ[{1/2 - n/2, -n/2}, {1, 1/2, 1/2}, 1/4];
Array[a, 22, 0]
-
x='x+O('x^22); Vec(serlaplace(cosh(x/(1-x))/(1-x)))
-
def A331325():
sa, sb, ta, tb, n = 1, 2, 1, 0, 2
yield sa
yield ta
while(True):
s = 2*n*sb - ((n-1)**2)*sa
t = 2*(n-1)*tb - ((n-1)**2)*ta
sa, sb, ta, tb = sb, s, tb, t
n += 1
yield (s + t)//2
a = A331325(); print([next(a) for _ in range(22)])
A331326
a(n) = n!*[x^n] sinh(x/(1 - x))/(1 - x).
Original entry on oeis.org
0, 1, 4, 19, 112, 801, 6756, 65563, 717760, 8729857, 116570980, 1693096131, 26548383984, 446689827169, 8023582921732, 153192673528651, 3097301219335936, 66095983547942913, 1484384376886189380, 34991710162280602867, 863797053818651591920, 22282392569877969167521
Offset: 0
-
gf := sinh(x/(1 - x))/(1 - x): ser := series(gf, x, 22):
seq(n!*coeff(ser, x, n), n=0..20);
# Alternative: seq(add(abs(A021009(n, 2*k+1)), k=0..n/2), n=0..21);
A331326 := proc(n) local S; S := proc(n, k) option remember; `if`(k = 0, 1,
`if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*add(S(n, 2*k+1), k=0..n) end:
seq(A331326(n), n=0..21);
-
a[n_] := n n! HypergeometricPFQ[{1/2 - n/2, 1 - n/2}, {1, 3/2, 3/2}, 1/4];
Array[a, 22, 0]
-
x='x+O('x^22); concat(0,Vec(serlaplace(sinh(x/(1-x))/(1-x))))
-
def A331326():
sa, sb, ta, tb, n = 1, 2, 1, 0, 2
yield 0
yield ta
while(True):
s = 2*n*sb - ((n-1)**2)*sa
t = 2*(n-1)*tb - ((n-1)**2)*ta
sa, sb, ta, tb = sb, s, tb, t
n += 1
yield (s - t)//2
a = A331326(); print([next(a) for _ in range(22)])
A331688
E.g.f.: exp(-x/(1 - x)) / (1 - 2*x).
Original entry on oeis.org
1, 1, 3, 17, 137, 1389, 16819, 236557, 3792753, 68326073, 1366917731, 30074632521, 721798881913, 18766625660197, 525460685327187, 15763716503597189, 504436925448024929, 17150818356045629937, 617428780939911647683, 23462281235407345160833
Offset: 0
-
f:= gfun:-rectoproc({a(n) = -(n - 1)*(5*n - 8)*a(n - 2) + (-3 + 4*n)*a(n - 1) + 2*(n - 1)*(n - 2)^2*a(n - 3),a(0)=1,a(1)=1,a(2)=3},a(n),remember):
map(f, [$0..30]); # Robert Israel, Jul 28 2020
-
nmax = 19; CoefficientList[Series[Exp[-x/(1 - x)]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k]^2 k! Subfactorial[n - k], {k, 0, n}], {n, 0, 19}]
A331725
E.g.f.: exp(x/(1 - x)) / (1 + x).
Original entry on oeis.org
1, 0, 3, 4, 57, 216, 2755, 18348, 247569, 2368432, 35256771, 436248660, 7235178313, 108919083144, 2010150360387, 35421547781116, 723689454172065, 14543895730321248, 326843345169621379, 7354350135365751972, 180610925178770615001, 4488323611011676811320
Offset: 0
-
A331725 := proc(n)
add((-1)^k*binomial(n,k)*k!*A000262(n-k),k=0..n) ;
end proc:
seq(A331725(n),n=0..42) ; # R. J. Mathar, Aug 20 2021
-
nmax = 21; CoefficientList[Series[Exp[x/(1 - x)]/(1 + x), {x, 0, nmax}], x] Range[0, nmax]!
A000262[n_] := If[n == 0, 1, n! Sum[Binomial[n - 1, k]/(k + 1)!, {k, 0, n - 1}]]; a[n_] := Sum[(-1)^k Binomial[n, k] k! A000262[n - k], {k, 0, n}]; Table[a[n], {n, 0, 21}]
a[n_] := (-1)^n n! (1 - Sum[(-1)^j*LaguerreL[j, 1, -1]/(j+1), {j,0,n-1}]);
Table[a[n], {n, 0, 21}] (* Peter Luschny, Feb 20 2022 *)
-
seq(n)={Vec(serlaplace(exp(x/(1 - x) + O(x*x^n)) / (1 + x)))} \\ Andrew Howroyd, Jan 25 2020
-
def gen_a():
F, L, S, N = 1, 1, 1, 1
while True:
yield F * S
L = gen_laguerre(N - 1, 1, -1) / N
S += L if F < 0 else -L
F *= -N; N += 1
a = gen_a(); print([next(a) for in range(21)]) # _Peter Luschny, Feb 20 2022
A336292
a(n) = (n!)^2 * Sum_{k=1..n} (-1)^(n-k) / (k * ((n-k)!)^2).
Original entry on oeis.org
0, 1, -2, 3, 8, 305, 10734, 502747, 30344992, 2307890097, 216571514030, 24619605092291, 3337294343698248, 532148381719443073, 98646472269855762238, 21041945289232131607995, 5118447176652195630775424, 1408601897794844346184122017, 435481794298015565250651718302
Offset: 0
-
Table[(n!)^2 Sum[(-1)^(n - k)/(k ((n - k)!)^2), {k, 1, n}], {n, 0, 18}]
nmax = 18; CoefficientList[Series[-Log[1 - x] BesselJ[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
-
a(n) = (n!)^2 * sum(k=1, n, (-1)^(n-k) / (k * ((n-k)!)^2)); \\ Michel Marcus, Jul 17 2020
A087860
Expansion of e.g.f.: (1-exp(x/(x-1)))/(1-x).
Original entry on oeis.org
0, 1, 3, 10, 39, 176, 905, 5244, 34111, 250480, 2108529, 20751380, 241315151, 3282366504, 50786289385, 865850559196, 15856276032255, 306665879765984, 6199863566817761, 130237717066988580, 2832527601333186319
Offset: 0
-
I:=[1,3,10]; [0] cat [n le 3 select I[n] else 3*(n-1)*Self(n-1) - (n-1)*(3*n-5)*Self(n-2) +(n-1)*(n-2)^2*Self(n-3): n in [1..30]];
-
With[{nn=20},CoefficientList[Series[(1-Exp[x/(x-1)])/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 27 2015 *)
-
x='x+O('x^30); concat([0], Vec(serlaplace((1-exp(x/(x-1)))/(1-x)))) \\ G. C. Greubel, Feb 06 2018
A253667
Square array read by ascending antidiagonals, T(n, k) = k!*[x^k](exp(-x) *sum(j=0..n, C(n,j)*x^j)), n>=0, k>=0.
Original entry on oeis.org
1, 1, -1, 1, 0, 1, 1, 1, -1, -1, 1, 2, -1, 2, 1, 1, 3, 1, -1, -3, -1, 1, 4, 5, -4, 5, 4, 1, 1, 5, 11, -1, 1, -11, -5, -1, 1, 6, 19, 14, -15, 14, 19, 6, 1, 1, 7, 29, 47, -19, 19, -47, -29, -7, -1, 1, 8, 41, 104, 37, -56, 37, 104, 41, 8, 1
Offset: 0
Square array starts:
[n\k][0 1 2 3 4 5 6]
[0] 1, -1, 1, -1, 1, -1, 1, ...
[1] 1, 0, -1, 2, -3, 4, -5, ...
[2] 1, 1, -1, -1, 5, -11, 19, ...
[3] 1, 2, 1, -4, 1, 14, -47, ...
[4] 1, 3, 5, -1, -15, 19, 37, ...
[5] 1, 4, 11, 14, -19, -56, 151, ...
[6] 1, 5, 19, 47, 37, -151, -185, ...
The first few rows as a triangle:
1,
1, -1,
1, 0, 1,
1, 1, -1, -1,
1, 2, -1, 2, 1,
1, 3, 1, -1, -3, -1,
1, 4, 5, -4, 5, 4, 1.
-
T := (n,k) -> k!*coeff(series(exp(-x)*add(binomial(n,j)*x^j, j=0..n), x, k+1), x, k): for n from 0 to 6 do lprint(seq(T(n,k),k=0..6)) od;
A330497
a(n) = n! * Sum_{k=0..n} (-1)^k * binomial(n,k) * n^(n - k) / k!.
Original entry on oeis.org
1, 0, 1, 26, 1089, 70124, 6495985, 821315214, 136115947009, 28651724077976, 7470040450004001, 2363470644596843330, 892244303052345224641, 396227360441775922668036, 204487588996059177697597969, 121370399839482643287189048374
Offset: 0
-
[Factorial(n)*&+[(-1)^k*Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
-
Join[{1}, Table[n! Sum[(-1)^k Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
Join[{1}, Table[n^n n! LaguerreL[n, 1/n], {n, 1, 15}]]
Table[n! SeriesCoefficient[Exp[-x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
A331334
a(n) = n! * [x^n] exp(1 - 1/(2*x + 1))/(2*x + 1).
Original entry on oeis.org
1, 0, -4, 32, -240, 1792, -11840, 26112, 1589504, -57548800, 1556757504, -39250780160, 973563695104, -24122607992832, 596246557736960, -14477682566889472, 332039052050104320, -6425352382711857152, 53086817854485692416, 4505005802471597015040, -419037805969718712991744
Offset: 0
-
gf := exp(1 - 1/(2*x + 1))/(2*x + 1): ser := series(gf, x, 32):
seq(n!*coeff(ser, x, n), n=0..20);
# Alternative:
a := proc(n) option remember; if n < 2 then 1 - n else
4*(1 - n)*((n - 1)*a(n - 2) + a(n - 1)) fi end: seq(a(n), n=0..20);
Comments