cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A179079 Permanent of the n X n matrix whose (i,j)-element is (i+j-1) modulo 3.

Original entry on oeis.org

1, 4, 9, 34, 192, 1032, 6936, 62496, 530712, 5005152, 61710336, 707802624, 8714718720, 133983590400, 1938416832000, 29588291712000, 544216485888000, 9509523337728000, 173318541516288000, 3711395156281344000, 76000261811572224000, 1610876530967703552000, 39351073330327191552000
Offset: 1

Views

Author

John W. Layman, Jan 04 2011

Keywords

Crossrefs

Cf. A010551.

Programs

  • Maple
    A179079 := proc(n) M := Matrix(n,n,(i,j) -> (i+j-1) mod 3) ; LinearAlgebra[Permanent](M) ; end proc: # R. J. Mathar, Jan 04 2011
  • Mathematica
    Permanent[m_List] := With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; Table[Permanent[Table[Mod[i+j-1,3], {i,1,n}, {j,1,n}]], {n,1,25}]

A293783 Triangle of numbers of squares {i^2}, i = 0,1..ceiling(n/2), in permutations of {1..n} in A293857.

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 2, 8, 0, 4, 0, 24, 0, 12, 0, 108, 0, 36, 576, 0, 720, 0, 144, 4608, 0, 4032, 0, 576, 0, 31680, 0, 31680, 0, 2880, 0, 288000, 0, 201600, 0, 14400, 2505600, 0, 2764800, 0, 1987200, 0, 86400, 30067200, 0, 28512000, 0, 14515200, 0, 518400
Offset: 1

Views

Author

Keywords

Comments

From Shevelev's comment in A008794 it follows that the last entries of rows, corresponding to the maximal possible i^2, form sequence A010551, n >= 1. Also note that the last entry of each row is the gcd of all its entries (for a proof see comment in A293857). - Vladimir Shevelev, Oct 26 2017

Examples

			Triangle begins
         0,      1;
         0,      1;
         2,      0,        2;
         8,      0,        4;
         0,     24,        0,     12;
         0,    108,        0,     36;
       576,      0,      720,      0,      144;
      4608,      0,     4032,      0,      576;
         0,  31680,        0,  31680,        0,  2880;
         0, 288000,        0, 201600,        0, 14400;
   2505600,      0,  2764800,      0,  1987200,     0,  86400;
  30067200,      0, 28512000,      0, 14515200,     0, 518400;
The compressed triangle resulting from the division of each entry by the last entry of its row begins as follows. If i is the index of the row, starting with i = 1 then this last entry is floor(i/2)! * (i - floor(i/2))!.
    0,   1;
    0,   1;
    1,   0,   1;
    2,   0,   1;
    0,   2,   0,   1;
    0,   3,   0,   1;
    4,   0,   5,   0,   1;
    8,   0,   7,   0,   1;
    0,  11,   0,  11,   0,   1;
    0,  20,   0,  14,   0,   1;
   29,   0,  32,   0,  23,   0,   1;
   58,   0,  55,   0,  28,   0,   1;
    0,  88,   0,  94,   0,  46,   0,   1;
    0, 169,   0, 146,   0,  53,   0,   1;
  263,   0, 282,   0, 283,   0,  86,   0,   1;
  526,   0, 515,   0, 383,   0,  97,   0,   1;
For the sense of the entries of this triangle see the [Shevelev] link (with a continuation there). Let B(n,i) be the set of permutations C of 1..n for which c_1 - c_2 + ... + (-1)^(n-1)*c_n = i^2, i >= 0. Then |B(n,i)| is the entry in the n-th row and i-th column of the first triangle. Let us call two permutations C_1 and C_2 equivalent if one of them is obtained from another by a permutation of its elements with odd indices and/or separately with even indices. Let b(n,i) be the entry in the n-th row and i-th column of the second triangle. Then b(n,i) is the maximal possible number of pairwise non-equivalent permutations which could be chosen in B(n,i). On the other hand, it is the smallest number of non-equivalent permutations in B(n,i) such that every other permutation in B(n,i) is equivalent to one of them. So in some sense b(n,i) is the dimension of B(n,i). In particular, b(n,i) = 0 corresponds to empty B(n,i). - _Vladimir Shevelev_, Nov 13 2017
		

Crossrefs

Programs

  • Mathematica
    a293783=Flatten[Table[PadLeft[Riffle[#,Table[0,{Floor[(n-1)/4]}]/.{}->0],1+Floor[(1+n)/2]](Floor[n/2]!*(n-Floor[n/2])!)&[Reverse[Map[SeriesCoefficient[QBinomial[n,Floor[(n+1)/2],q],{q,0,#}]&,Map[2#(Floor[(n+1)/2] - #)&,Range[0,Floor[(n+1)/4]]]]]],{n,20}]] (* Peter J. C. Moses, Nov 01 2017 *)

Formula

Row sums of triangle give A293857.
If C = {c_1..c_n} is a permutation of {1..n}, then c_1 - c_2 + ... has the same parity as 1 + 2 + ... + n = n*(n+1)/2. So adjacent rows in the triangle for odd and even n have the same positions of 0's. These positions follow through one, beginning from the first position for n == 1,2 (mod 4) and from the second position for n == 3,0 (mod 4). - David A. Corneth and Vladimir Shevelev, Oct 19 2017

A171645 Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes, A000040, a(1) = 2.

Original entry on oeis.org

2, 4, 8, 12, 18, 30, 50, 70, 98, 154, 242, 286, 338, 442, 578, 646, 722, 874, 1058, 1334, 1682, 1798, 1922, 2294, 2738
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

Analogous formulas using A000041 terms = A171646; Fibonacci numbers, A006498; factorials, A010551.

Examples

			a(10) = 154 = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
		

Crossrefs

Programs

  • Mathematica
    FoldList[Times,Join[{2,2,2},Flatten[{#[[2]]/#[[1]],#[[2]]/#[[1]]}&/@Partition[Prime[Range[20]],2,1]]]] (* Harvey P. Dale, Oct 02 2024 *)

Formula

Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), =
2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes,
A000040, a(1) = 2.
a(n)=2*A057602(n-1). [From R. J. Mathar, Dec 15 2009]

A171646 a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...*; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 15, 25, 35, 49, 77, 121, 165, 225, 330, 484, 660, 900, 1260, 1764, 2352, 3136, 4312, 5929, 7777, 10201, 13635, 18225, 23760, 30976, 40656, 53361, 68607, 88209, 114345, 148225, 188650, 240100, 307230
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

A006498 = analogous sequence using the Fibonacci numbers.
A171645 = .............................Primes, analogous formula.
A010551 = .............................Factorial numbers, analogous formula.

Examples

			a(12) = 77 = 1*1*1*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
		

Crossrefs

Programs

  • Maple
    A171646t := proc(n)
        local nh;
        nh := floor(n/2) ;
        combinat[numbpart](nh)/combinat[numbpart](nh-1) ;
    end proc:
    A171646 := proc(n)
        mul(A171646t(i),i=2..n) ;
    end proc:
    1,seq(A171646(n),n=2..40) ; # R. J. Mathar, Jul 21 2015

Formula

a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

Extensions

Corrected by R. J. Mathar, Jul 21 2015

A203151 (n-1)-st elementary symmetric function of {1,1,2,2,3,3,4,4,5,5,...,Floor[(n+1)/2]}.

Original entry on oeis.org

1, 2, 5, 12, 40, 132, 564, 2400, 12576, 65760, 408960, 2540160, 18299520, 131725440, 1079205120, 8836853760, 81157386240, 745047797760, 7582159872000, 77138417664000, 861690783744000, 9623448705024000, 117074735382528000
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Comments

Column 3 of A246117. - Peter Bala, Aug 15 2014
From R. J. Mathar, Oct 01 2016 (Start):
The k-th elementary symmetric functions of the repeated integers 1,1,2,2,..[(n+1)/2], form a triangle T(n,k), 0<=k<=n, n>=0:
1
1 1
1 2 1
1 4 5 2
1 6 13 12 4
1 9 31 51 40 12
which is a row-reversed version of A246117. This here is the first subdiagonal. The diagonal is A010551. The 2nd column is A002620, the 3rd A203246. (End)

Examples

			Let esf abbreviate "elementary symmetric function".  Then
0th esf of {2}:  1;
1st esf of {1,1}:  1+1=2;
2nd esf of {1,1,2} is 1*1+1*2+1*2=5.
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Floor[(k + 1)/2]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 22}] (* A203151 *)

A354208 Number of parity-alternating permutations of [n] avoiding the pattern 321.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 22, 44, 89, 185, 382, 808, 1702, 3635, 7779, 16736, 36229, 78466, 171238, 373203, 819186, 1795611, 3958662, 8721086, 19294525, 42691298, 94733886, 210379132, 468084856, 1042703207, 2325575076, 5193931583, 11609749877, 25986720374, 58203955771
Offset: 0

Views

Author

Per W. Alexandersson, Jun 06 2022

Keywords

Comments

A permutation is parity-alternating if it sends odd integers to odd integers, and even integers to even integers. It avoids 321 if there is no subsequence a..b..c with a > b > c. The values are computed by Michael Albert, see MathOverflow link.

Examples

			For n=4, the two permutations are 1234, 3412.
For n=5, we have 12345, 34125, 14523.
For n=6, we have 123456, 341256, 145236, 125634, 561234, 345612.
		

Crossrefs

Cf. A000108 (321-avoiding permutations), A010551 (parity-alternating permutations).

Extensions

Offset corrected and terms a(30) and beyond from Peter J. Taylor, Jun 10 2022

A080392 Numbers k such that A000984(k) mod k = 0 and A080383(k) != 7.

Original entry on oeis.org

2, 420, 920, 1122, 1218, 1892, 1978, 2444, 2914, 3198, 3782, 4028, 4136, 4292, 4664, 4958, 4960, 5330, 5762, 5986, 6020, 6032, 6710, 6834, 6864, 6882, 6954, 6956, 6968, 7106, 7130, 7140, 7238, 7254, 7448, 7616, 8178, 8190, 8400, 8692, 9462, 9506, 10712, 11060, 11288
Offset: 1

Views

Author

Labos Elemer, Mar 17 2003

Keywords

Comments

Numbers arising in A067348 and not present in A080385.
Even numbers n such that n divides binomial(n, [n/2]) and A010551(n) does not divide j!*(n-j)! exactly 7 times for j = 0..n. - Peter Luschny, Aug 04 2017

Examples

			A080383(2) = 3;
A080383(420) = 11;
A080383(920) = 11;
A080383(1122) = 9;
A080383(1218) = 9.
		

Crossrefs

Programs

  • Maple
    isa := proc(n)  local bn, bm;
    if n mod 2 = 0 then bn := binomial(n, iquo(n,2)):
    if modp(bn, n) = 0 then
       bm := (n, j) -> `if`(modp(bn, binomial(n, j)) = 0, 1, 0):
       return 1 <> add(bm(n, j), j=2..iquo(n,2)-1)
    fi fi; false end:
    select(isa, [$1..5000]); # Peter Luschny, Aug 04 2017
  • Mathematica
    Do[s=Count[Table[IntegerQ[Binomial[n, Floor[n/2]]/ Binomial[n, j]], {j, 0, n}], True]; s1=IntegerQ[Binomial[n, n/2]/n]; If[ !Equal[s, 7] && Equal[s1, True], Print[n]], {n, 1, 10000}]
    (* Second program: *)
    Select[Range@ 5000, Function[n, And[Divisible[Binomial[n, n/2], n], Count[Table[Divisible[Binomial[n, Floor[n/2]], Binomial[n, j]], {j, 0, n}], True] != 7]]] (* Michael De Vlieger, Jul 30 2017 *)

Extensions

More terms from Michael De Vlieger, Jul 30 2017

A139769 T(n,k) = [x^k] Product_{m=1..n} d/dx Sum_{i=1..m} x^i; triangle read by rows, n >= 0, 0 <= k <= A161680(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 7, 6, 1, 6, 18, 36, 49, 46, 24, 1, 8, 33, 94, 204, 354, 497, 562, 501, 326, 120, 1, 10, 52, 188, 528, 1222, 2406, 4102, 6116, 7996, 9132, 9014, 7541, 5116, 2556, 720, 1, 12, 75, 326, 1105, 3106, 7513, 16014, 30558, 52752, 82938, 119230, 156983
Offset: 0

Views

Author

Roger L. Bagula, Jun 13 2008

Keywords

Comments

Row sums are A006472(n+1).
T(n, binomial(n,2)-k) is the number of rank-k intervals in the middle order on permutations. (See Bouvel et al. reference.) - Bridget Tenner, May 24 2024

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 2;
  1, 4,  7,  6;
  1, 6, 18, 36,  49,  46,  24;
  1, 8, 33, 94, 204, 354, 497, 562, 501, 326, 120;
  ...
		

Crossrefs

Cf. A000142, A008302 (Mahonian numbers), A006472, A010551, A161680, A259459.

Programs

  • Mathematica
    a := Table[CoefficientList[Product[Sum[D[x^i, x], {i, 1, m}], {m, 1, n}], x], {n, 0, 7}]; Flatten[a]

Formula

From Alois P. Heinz, May 24 2024: (Start)
|Sum_{k=0..binomial(n,2)} (-1)^k T(n,k)| = A010551(n).
Sum_{k=0..binomial(n,2)} (binomial(n,2)-k)*T(n,k) = A259459(n-2) for n>=2. (End)

Extensions

Edited by Alois P. Heinz, May 24 2024

A356639 Number of integer sequences b with b(1) = 1, b(m) > 0 and b(m+1) - b(m) > 0, of length n which transform under the map S into a nonnegative integer sequence. The transform c = S(b) is defined by c(m) = Product_{k=1..m} b(k) / Product_{k=2..m} (b(k) - b(k-1)).

Original entry on oeis.org

1, 1, 3, 17, 155, 2677, 73327, 3578339, 329652351
Offset: 1

Views

Author

Thomas Scheuerle, Aug 19 2022

Keywords

Comments

This sequence can be calculated by a recursive algorithm:
Let B1 be an array of finite length, the "1" denotes that it is the first generation. Let B1' be the reversed version of B1. Let C be the element-wise product C = B1 * B1'. Then B2 is a concatenation of taking each element of B1 and add all divisors of the corresponding element in C. If we start with B1 = {1} then we get this sequence of arrays: B2 = {2}, B3 = {3, 4, 6}, ... . a(n) is the length of the array Bn. In short the length of Bn+1 and so a(n+1) is the sum over A000005(Bn * Bn').
The transform used in the definition of this sequence is its own inverse, so if c = S(b) then b = S(c). The eigensequence is 2^n = S(2^n).
There exist some transformation pairs of infinite sequences in the database:
A026549 <--> A038754; A100071 <--> A001405; A058295 <--> A------;
A111286 <--> A098011; A093968 <--> A205825; A166447 <--> A------;
A079352 <--> A------; A082458 <--> A------; A008233 <--> A264635;
A138278 <--> A------; A006501 <--> A264557; A336496 <--> A------;
A019464 <--> A------; A062112 <--> A------; A171647 <--> A359039;
A279312 <--> A------; A031923 <--> A------.
These transformation pairs are conjectured:
A137326 <--> A------; A066332 <--> A300902; A208147 <--> A308546;
A057895 <--> A------; A349080 <--> A------; A019442 <--> A------;
A349079 <--> A------.
("A------" means not yet in the database.)
Some sequences in the lists above may need offset adjustment to force a beginning with 1,2,... in the transformation.
If we allowed signed rational numbers, further interesting transformation pairs could be observed. For example, 1/n will transform into factorials with alternating sign. 2^(-n) transforms into ones with alternating sign and 1/A000045(n) into A000045 with alternating sign.

Examples

			a(4) = 17. The 17 transformation pairs of length 4 are:
  {1, 2, 3, 4}  = S({1, 2, 6, 24}).
  {1, 2, 3, 5}  = S({1, 2, 6, 15}).
  {1, 2, 3, 6}  = S({1, 2, 6, 12}).
  {1, 2, 3, 9}  = S({1, 2, 6, 9}).
  {1, 2, 3, 12} = S({1, 2, 6, 8}).
  {1, 2, 3, 21} = S({1, 2, 6, 7}).
  {1, 2, 4, 5}  = S({1, 2, 4, 20}).
  {1, 2, 4, 6}  = S({1, 2, 4, 12}).
  {1, 2, 4, 8}  = S({1, 2, 4, 8}).
  {1, 2, 4, 12} = S({1, 2, 4, 6}).
  {1, 2, 4, 20} = S({1, 2, 4, 5}).
  {1, 2, 6, 7}  = S({1, 2, 3, 21}).
  {1, 2, 6, 8}  = S({1, 2, 3, 12}).
  {1, 2, 6, 9}  = S({1, 2, 3, 9}).
  {1, 2, 6, 12} = S({1, 2, 3, 6}).
  {1, 2, 6, 15} = S({1, 2, 3, 5}).
  {1, 2, 6, 24} = S({1, 2, 3, 4}).
b(1) = 1 by definition, b(2) = 1+1 as 1 has only 1 as divisor.
a(3) = A000005(b(2)*b(2)) = 3.
The divisors of b(2) are 1,2,4. So b(3) can be b(2)+1, b(2)+2 and b(2)+4.
a(4) = A000005((b(2)+1)*(b(2)+4)) + A000005((b(2)+2)*(b(2)+2)) + A000005((b(2)+4)*(b(2)+1)) = 17.
		

Crossrefs

A335109 Triangle read by rows: T(n,k) is the number of permutations of length n with each cycle of the permutation containing only elements that are identical (mod k), where 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 24, 4, 2, 1, 120, 12, 4, 2, 1, 720, 36, 8, 4, 2, 1, 5040, 144, 24, 8, 4, 2, 1, 40320, 576, 72, 16, 8, 4, 2, 1, 362880, 2880, 216, 48, 16, 8, 4, 2, 1, 3628800, 14400, 864, 144, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

Dennis P. Walsh, May 23 2020

Keywords

Comments

Let [n] denote {1,2,...,n} and let [n](j,k) denote the subset of [n] consisting of all elements of [n] that equal j mod k. The cardinality of [n](j,k) equals ceiling(n/k) for j = 1..(n mod k) and equals floor(n/k) for j > (n mod k). Therefore, upon permuting the elements of each [n](j,k) subset, we obtain T(n,k) = (ceiling(n/k)!)^(n mod k)*(floor(n/k)!)^(k-(n mod k)).

Examples

			Triangle begins:
    1;
    2  1;
    6  2 1;
   24  4 2 1;
  120 12 4 2 1;
  ...
T(6,3) counts the 8 permutations of [6] where all cycle-mates are identical mod 3, namely, (1 4)(2 5)(3 6), (1 4)(2 5)(3)(6), (1 4)(2)(5)(3 6), (1)(4)(2 5)(3 6), (1 4)(2)(5)(3)(6), (1)(4)(2 5)(3)(6), (1)(4)(2)(5)(3 6) and (1)(2)(3)(4)(5)(6).
		

Crossrefs

Programs

  • Maple
    seq(seq((ceil(n/k)!)^(n mod k)*(floor(n/k)!)^(k-(n mod k)), k=1..n), n=1..10);
  • Mathematica
    Table[(Ceiling[n/k]!)^Mod[n, k]*(Floor[n/k]!)^(k - Mod[n, k]), {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Jun 28 2020 *)

Formula

T(n,k) = (ceiling(n/k)!)^(n mod k)*(floor(n/k)!)^(k-(n mod k)) for 1 <= k <= n.
T(n,1) = A000142(n).
T(n,2) = A010551(n) for n > 1.
T(n,3) = A264557(n) for n > 2.
T(n,4) = A264635(n) for n > 3.
T(n,5) = A264656(n) for n > 4.
T(n,k) = Product_{i=0..k-1} floor((n+i)/k)!. - Alois P. Heinz, May 23 2020
Previous Showing 21-30 of 32 results. Next