cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A386261 a(n) = A001511(A001511(n)), where A001511 is the ruler function.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 17 2025

Keywords

Comments

The first occurrence of k = 1, 2, ... is at n = 2^(2^(k-1) - 1) = A058891(k).
The asymptotic density of the occurrences of k = 1, 2, ... in this sequence is 2^(2^(k-1))/(2^(2^k)-1) = 2/3, 4/15, 16/255, 256/65535, 65536/4294967295, ...

Crossrefs

Programs

  • Mathematica
    f[n_] := IntegerExponent[n, 2] + 1; a[n_] := f[f[n]]; Array[a, 100]
  • PARI
    a(n) = valuation(valuation(n, 2) + 1, 2) + 1;

Formula

a(n) >= 1, with equality if and only if n is in A003159.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{m>=0} 1/(2^(2^m) - 1) = 1.4039368... (A048649).

A386262 a(n) = A051903(A051903(n)) for n >= 2, a(1) = 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jul 17 2025

Keywords

Comments

The first occurrence of k = 1, 2, ... is at n = 2^(2^k) = A001146(k).
If n is an exponentially squarefree number (A209061) then a(n) <= 1. The converse is not necessarily true, with n = 2592 = 2^5 * 3^4 being the least counterexample.
The asymptotic density of the occurrences of 0 in this sequence is 1/zeta(2) = 6/Pi^2 (A059956).
The asymptotic density of the occurrences of 1 in this sequence is Sum_{k squarefree > 1} (1/zeta(k+1) - 1/zeta(k)) = 0.348423339572619656701... .

Crossrefs

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;; , 2]]]; f[1] = 0; a[n_] := f[f[n]]; a[1] = 0; Array[a, 100]
  • PARI
    f(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
    a(n) = if(n == 1, 0, f(f(n)));

Formula

a(n) = 0 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} A051903(k) * (1/zeta(k+1)-1/zeta(k)) = 0.43779421197744649258... .

A053023 Divisor function applied thrice to n!.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 6, 6, 6, 5, 8, 8, 8, 8, 8, 9, 8, 10, 8, 10, 10, 12, 10, 10, 10, 15, 16, 16, 18, 16, 8, 16, 10, 12, 16, 18, 14, 3, 14, 16, 24, 16, 16, 20, 24, 24, 28, 24, 24, 16, 24, 24, 32, 32, 28, 32, 18, 20, 24, 28, 36, 32, 36, 24, 21, 24, 20, 40, 40, 30, 30, 36, 40, 42, 24, 32
Offset: 1

Views

Author

Labos Elemer, Feb 24 2000

Keywords

Examples

			A036450(x) = 8 if x = 11!, 12!, 13!, 14!, 15!. The reversed sequences of these d-iterates are {2, 3, 4, 8, 24, 540, 39916800}, {2, 3, 4, 8, 24, 792, 479001600}, {2, 3, 4, 8, 30, 1584, 6227020800}, {2, 3, 4, 8, 30, 2592, 87178291200}, {2, 3, 4, 8, 42, 4032, 1307674368000}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Nest[DivisorSigma[0, #]&, n!, 3]; Array[a, 100] (* Amiram Eldar, Aug 12 2024 *)
  • PARI
    a(n) = numdiv(numdiv(numdiv(n!))); \\ Amiram Eldar, Aug 12 2024

Formula

a(n) = d(d(d(n!))) = A036450(A000142(n)) = A036450(n!).

A140128 A positive integer k is included if d(d(k)) = d(d(k+1)), where d(k) is the number of divisors of k.

Original entry on oeis.org

2, 3, 4, 14, 16, 21, 26, 33, 34, 35, 38, 44, 57, 75, 85, 86, 93, 94, 98, 104, 116, 118, 122, 133, 135, 141, 142, 145, 147, 152, 153, 158, 164, 170, 171, 174, 175, 177, 188, 189, 201, 202, 205, 207, 213, 214, 217, 218, 225, 230, 231, 242, 243, 244, 245, 253, 272
Offset: 1

Views

Author

Leroy Quet, Jun 04 2008

Keywords

Examples

			35 has 4 divisors and 4 has 3 divisors. 36 has 9 divisors and 9 has 3 divisors. Since d(d(35)) = d(d(36)) (=3), then 35 is included in the sequence.
		

Crossrefs

A005237 is a subsequence.

Programs

  • Mathematica
    Select[Range[250], DivisorSigma[0, DivisorSigma[0, # ]] == DivisorSigma[0, DivisorSigma[0, # + 1]] &] (* Stefan Steinerberger, Jun 05 2008 *)
  • PARI
    is(k) = numdiv(numdiv(k)) == numdiv(numdiv(k+1)); \\ Amiram Eldar, Apr 16 2024

Formula

For m = 2,3,4,5..., a(m) is the smallest integer > a(m-1) such that A010553(a(m)) = A010553(a(m)+1).

Extensions

More terms from Stefan Steinerberger, Jun 05 2008
a(56)-a(57) from Ray Chandler, Jun 26 2009

A163374 a(n) = tau(tau(phi(n))).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 3, 3, 3, 2, 3, 4, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 4, 2, 4, 2, 4, 4, 3, 4, 4, 2, 4, 4, 4, 4, 4, 3, 3, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 2, 6, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 3, 4, 3, 6, 4, 4, 4, 4, 4, 3, 4, 2, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2009

Keywords

Examples

			tau(tau(phi(7))) = tau(tau(6)) = tau(4) = 3. Thus a(7) = 3. - _Derek Orr_, Jul 27 2014
		

Crossrefs

Cf. A000005 (tau), A000010 (phi), A010553, A062821.

Programs

  • Magma
    [NumberOfDivisors(NumberOfDivisors(EulerPhi(n))): n in [1..100]]; // Vincenzo Librandi, Jul 27 2014
    
  • Mathematica
    DivisorSigma[0,DivisorSigma[0,EulerPhi[Range[90]]]] (* Harvey P. Dale, Mar 25 2016 *)
  • PARI
    a(n)=sigma(sigma(eulerphi(n),0),0); \\ Derek Orr, Jul 27 2014

Formula

Extensions

More terms from Vincenzo Librandi, Jul 27 2014

A173338 Numbers n such that tau(tau(n)) = sopf(sopf(n)), sopf = A008472.

Original entry on oeis.org

2, 4, 14, 16, 27, 64, 158, 168, 196, 216, 312, 378, 384, 440, 456, 482, 546, 680, 702, 744, 770, 1024, 1026, 1032, 1160, 1454, 1608, 1640, 1674, 1880, 2024, 2058, 2295, 2322, 2472, 2750, 2805, 2944, 3336, 3560, 3608, 3618, 3768, 3828, 3944, 3960, 4040, 4096
Offset: 1

Views

Author

Michel Lagneau, Feb 16 2010

Keywords

Comments

sopf(n) is the sum of distinct primes dividing n (without repetition, A008472), tau(n) is the number of divisors of n (A000005).

Examples

			4 is in the sequence: tau(4) = 3, tau(3) = 2; sopf(4) = 2, sopf(2) = 2.
546 is in the sequence: tau(546) = 16, tau(16) = 5; sopf(546) = 25, sopf(25) = 5.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

Crossrefs

Programs

  • Magma
    f:=func; g:=func; [k:k in [2..5000]|f(f(k)) eq g(g(k)) ]; // Marius A. Burtea, Nov 14 2019
  • Maple
    with(numtheory): for n from 1 to 60000 do : t1:= ifactors(n)[2] : t2 :=sum(t1[i][1], i=1..nops(t1)): tt1:= ifactors(t2)[2] : tt2 :=sum(tt1[i][1], i=1..nops(tt1)):if tau(tau(n))= tt2 then print (n): else fi : od :
    # second Maple program:
    with(numtheory): sopf:= n-> add(i, i=factorset(n)):
    a:= proc(n) option remember; local k;
          for k from 1+ `if`(n=1, 0, a(n-1))
          while tau(tau(k)) <> sopf(sopf(k)) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 26 2010
  • Mathematica
    Select[Range[4100],DivisorSigma[0,DivisorSigma[0,#]]==Total[ Transpose[ FactorInteger[ Total[Transpose[FactorInteger[#]][[1]]]]][[1]]]&] (* Harvey P. Dale, Aug 05 2013 *)

Formula

{ n : A010553(n) = A008472(A008472(n)) }.

Extensions

Corrected and edited by Michel Lagneau, Apr 25 2010

A173746 Numbers k such that tau(tau(k)) = rad(k).

Original entry on oeis.org

1, 2, 4, 16, 27, 64, 72, 96, 108, 288, 432, 486, 648, 768, 972, 1024, 1536, 1728, 3456, 4096, 5832, 6561, 13122, 17496, 20736, 24576, 27648, 39366, 41472, 65536, 98304, 104976, 110592, 147456, 186624, 256000, 262144, 314928, 400000, 419904, 472392
Offset: 1

Views

Author

Michel Lagneau, Feb 23 2010

Keywords

Comments

Tau = A000005 is the number of divisors of its argument. rad(n) = A007947(n) is the product of the primes dividing n.
Note that rad() is idempotent: rad(rad(n)) = rad(n). - R. J. Mathar, Nov 07 2011

Examples

			288 is in the sequence because tau(288)= 18, tau(18)=6, rad(288)=6.
		

Programs

  • Maple
    A010553 := proc(n)
            numtheory[tau](numtheory[tau](n)) ;
    end proc:
    for n from 1 to 480000 do
            if A010553(n) = A007947(n) then
                    printf("%d,",n) ;
            end if;
    end do: # R. J. Mathar, Nov 07 2011

Formula

{n : A010553(n) = A007947(n)}.

Extensions

Example corrected and edited by Michel Lagneau, Apr 25 2010

A280583 a(n) = product of divisors of the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 8, 2, 8, 3, 8, 2, 36, 2, 8, 8, 5, 2, 36, 2, 36, 8, 8, 2, 64, 3, 8, 8, 36, 2, 64, 2, 36, 8, 8, 8, 27, 2, 8, 8, 64, 2, 64, 2, 36, 36, 8, 2, 100, 3, 36, 8, 36, 2, 64, 8, 64, 8, 8, 2, 1728, 2, 8, 36, 7, 8, 64, 2, 36, 8, 64, 2, 1728, 2, 8, 36, 36, 8
Offset: 1

Views

Author

Jaroslav Krizek, Jan 07 2017

Keywords

Examples

			For n = 6; a(n) = product of divisors (tau(6)) = 1*2*4 = 8.
		

Crossrefs

Programs

  • Magma
    [&*[d: d in Divisors(#[d: d in Divisors(n)])]: n in [1..100]]
    
  • Mathematica
    Table[Times@@Divisors[DivisorSigma[0,n]],{n,80}] (* Harvey P. Dale, Dec 04 2021 *)
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A280583(n): return (lambda m:(isqrt(m) if (c:=divisor_count(m)) & 1 else 1)*m**(c//2))(divisor_count(n)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(A000005(n)).
a(p) = 2 for p = primes (A000040).
a(n) = 3 for squares of primes (A001248).

A293167 a(n) = Sum_{k = 1..n} d(d(d(k))), where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 34, 37, 39, 42, 44, 46, 48, 51, 53, 55, 57, 60, 62, 65, 67, 70, 72, 74, 76, 78, 80, 82, 84, 87, 89, 92, 94, 97, 100, 102, 104, 107, 109, 112, 114, 117, 119, 122, 124, 127, 129, 131, 133, 137, 139, 141, 144, 146, 148, 151, 153, 156, 158
Offset: 1

Views

Author

N. J. A. Sloane, Oct 17 2017

Keywords

Crossrefs

Part of the sequence A000005, A006218, A010553, A036450, A139130.

Programs

  • Mathematica
    Accumulate[Table[DivisorSigma[0, DivisorSigma[0, DivisorSigma[0, n]]], {n, 80}]] (* Alonso del Arte, Oct 17 2017 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(numdiv(numdiv(k)))); \\ Michel Marcus, Oct 17 2017
    
  • PARI
    first(n) = {my(v = vector(n)); v[1] = 1; for(i=2,n,v[i] = v[i-1] + numdiv(numdiv(numdiv(i)))); v} \\ David A. Corneth, Oct 17 2017

Formula

a(1) = 1; a(n + 1) = a(n) + A036450(n + 1) for n > 0. - David A. Corneth, Oct 17 2017
a(n) = (1 + o(1)) * c * n * log(log(log(n))), where c > 0 is a constant (Kátai, 1969). - Amiram Eldar, Apr 17 2024

A343502 Numbers k such that tau(tau(k)) and tau(k+1) are both prime, where tau is the number of divisors function.

Original entry on oeis.org

2, 3, 4, 6, 8, 10, 15, 16, 22, 36, 46, 58, 82, 100, 106, 120, 166, 168, 178, 196, 210, 226, 256, 262, 270, 280, 312, 330, 346, 358, 378, 382, 408, 456, 462, 466, 478, 502, 520, 546, 562, 570, 586, 616, 640, 676, 690, 718, 728, 750, 760, 838, 858, 862, 886
Offset: 1

Views

Author

Claude H. R. Dequatre, Apr 17 2021

Keywords

Comments

Considering the first 10^8 positive integers there are 1439855 terms in the sequence and only the first two (2,3) are prime, all the others are composite numbers of which only three are odd (15, 65535 and 4194303).
Conjecture: all members except 2 and 3 are composite.
Open question: is there a finite number of odd terms in this sequence?

Examples

			16 is a term because tau(16) = 5 and tau(5) = 2 and tau(17) = 2 and 2 is prime.
23 is not a term because tau(23) = 2 and tau(2) = 2 and tau(24) = 8 and 2 is prime but not 8.
98 is not a term because tau(98) = 6 and tau(6) = 4 and tau(99) = 6 and 4 and 6 are not prime.
		

Crossrefs

Cf. A000005, A000040, A010553. Includes A077065.

Programs

  • Maple
    filter:= proc(n)
      isprime(numtheory:-tau(n+1)) and isprime(numtheory:-tau(numtheory:-tau(n)))
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Feb 02 2025
  • Mathematica
    With[{t = DivisorSigma}, Select[Range[1000], And @@ PrimeQ[{t[0, t[0, #]], t[0, # + 1]}] &]] (* Amiram Eldar, May 27 2021 *)
  • PARI
    for(k=1,1e4,if(isprime(numdiv(numdiv(k))) && isprime(numdiv(k+1)),print1(k", ")))
Previous Showing 21-30 of 32 results. Next