cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A093661 Partial sums of A093660.

Original entry on oeis.org

1, 3, 5, 10, 12, 17, 22, 38, 40, 45, 50, 66, 71, 87, 103, 168, 170, 175, 180, 196, 201, 217, 233, 298, 303, 319, 335, 400, 416, 481, 546, 872, 874, 879, 884, 900, 905, 921, 937, 1002, 1007, 1023, 1039, 1104, 1120, 1185, 1250, 1576, 1581, 1597, 1613, 1678, 1694
Offset: 1

Views

Author

Paul D. Hanna, Apr 08 2004

Keywords

Comments

A093660 gives the row sums of lower triangular matrix A093658. Related to the incomplete Gamma Function at 2 (A010842).

Crossrefs

Formula

a(2^n) = A010842(n) for n>=0.

A108869 E.g.f. : exp(6x)/(1-x).

Original entry on oeis.org

1, 7, 50, 366, 2760, 21576, 176112, 1512720, 13781376, 134110080, 1401566976, 15780033792, 191537187840, 2503044135936, 35120982067200, 527284915992576, 8439379765788672, 143486382677852160, 2582856448158007296
Offset: 0

Views

Author

Philippe Deléham, Jul 13 2005

Keywords

Comments

Binomial transform of A080954.
a(n) is the permanent of the n X n matrix with 7's on the diagonal and 1's elsewhere.

Crossrefs

Programs

  • Maple
    a:=n->n!*sum(6^k/k!,k=0..n): seq(a(n),n=0..20); # Emeric Deutsch, Jul 18 2005
    restart:F(x):=exp(6*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..18); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    a[n_] := n! * Sum[6^k/k!, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jun 30 2020 *)

Formula

a(n) = n!*Sum_{ k = 0..n } 6^k/k!.
a(n) = Sum_{ k = 0..n } A008290(n, k)*7^k.
a(n) Sum_{ k = 0..n } k!*C(n, k)*6^(n-k).

Extensions

More terms from Emeric Deutsch, Jul 18 2005

A343685 a(0) = 1; a(n) = 2 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).

Original entry on oeis.org

1, 3, 19, 182, 2328, 37234, 714674, 16004064, 409587144, 11792756640, 377261048592, 13275818803488, 509646721402032, 21195285059025648, 949279217570464944, 45552467588773815744, 2331624264279599225088, 126804353256754734370176, 7301857349340031590836352, 443826900013575494233057536
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 2 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(1 - 2 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: 1 / (1 - 2*x + log(1 - x)).
a(n) ~ n! / ((2/c + 1 - c) * (1 - c/2)^n), where c = LambertW(2*exp(1)) = 1.3748225281836233816178373171119... - Vaclav Kotesovec, Apr 26 2021

A080252 a(n) = n*a(n-1)+4*a(n-2)-4*(n-2)*a(n-3).

Original entry on oeis.org

0, 1, 2, 10, 40, 216, 1296, 9136, 73088, 658048, 6580480, 72386304, 868635648, 11292267520, 158091745280, 2371376195584, 37942019129344, 645014325264384, 11610257854758912, 220594899240681472, 4411897984813629440
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Feb 10 2003

Keywords

Crossrefs

Programs

  • Maple
    A080252 := n -> (exp(2)*GAMMA(1+n,2) - exp(-2)*GAMMA(1+n,-2))/4:
    seq(simplify(A080252(n)), n=0..20); # Peter Luschny, Dec 18 2017
  • Mathematica
    c = CoefficientList[Series[(Sinh[z]*Cosh[z])/(1 - z), {z, 0, 25}], z]; For[n = 0, n < 25, n++; Print[c[[n]]*(n - 1)! ]]
    RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==n*a[n-1]+4a[n-2]-4(n-2)* a[n-3]}, a,{n,20}] (* Harvey P. Dale, Nov 17 2013 *)
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(sinh(x)*cosh(x)/(1-x)))) \\ Altug Alkan, Dec 18 2017

Formula

E.g.f.: sinh(z)*cosh(z)/(1-z).
a(n) ~ n!*(e^2-1/e^2)/4. - Vaclav Kotesovec, Oct 13 2012
a(n) = (exp(2)*Gamma(1+n,2) - exp(-2)*Gamma(1+n,-2))/4 = (A010842(n) - A000023(n))/4. - Peter Luschny, Dec 18 2017

A188143 Binomial transform of A187848.

Original entry on oeis.org

1, 5, 29, 193, 1453, 12209, 113237, 1149241, 12675661, 151095569, 1937411429, 26614052617, 390244490749, 6087782363009, 100728768290645, 1762767028074937, 32542231109506285, 632202858036492593, 12895661952702667205
Offset: 0

Views

Author

Groux Roland, Mar 24 2011

Keywords

Comments

a(n) is also the INVERTi transform of A010842(n+1) starting at n=2.
a(n) is also the moment of order n for the measure of density: exp(x-2) / ((Ei(x-2))^2+Pi^2) over the interval 2..infinity with Ei the exponential integral.
More generally, for every integer k, the sequence a(n,k)=int(x^n*exp(x-k) / ((Ei(x-k))^2+Pi^2), x=k..infinity) is the INVERTi transform of the sequence b(n+1,k), starting at n=2, with b(n,k)=int(x^n*exp(x-k), x=k..infinity) whose e.g.f. is exp(k*x)/(1-x).

Crossrefs

Cf. A000023.

Programs

  • Maple
    with(LinearAlgebra):
    c:= proc(n) option remember; add(n!/k!, k=0..n) end:
    b:= n-> (-1)^(n+1) * Determinant(Matrix(n+2,
            (i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))):
    a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 24 2011
  • Mathematica
    c[n_] := c[n] = Sum[n!/k!, {k, 0, n}]; b[n_] := (-1)^(n+1)*Det[Table[If[0 <= i+1-j, c[i+1-j], 0], {i, 1, n+2}, {j, 1, n+2}]]; a[n_] := Sum[b[k] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)

Formula

a(n) = Integral_{x=2..oo} x^n*exp(x-2)/((Ei(x-2))^2 + Pi^2) dx.
G.f.: 1/x^2 - 3/x - Q(0)/x^2, where Q(k) = 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ exp(2) * n^2 * n!. - Vaclav Kotesovec, Nov 02 2023

A295518 a(n) = e^2 * Sum_{k=0..n-1} Gamma(k + 1, 2).

Original entry on oeis.org

0, 1, 4, 14, 52, 220, 1092, 6388, 43588, 341444, 3022660, 29835844, 324782916, 3864151876, 49875956548, 694041238340, 10356520497988, 164956188717892, 2793150548587332, 50100649026499396, 948943120107352900, 18925792541725471556, 396439630395708060484
Offset: 0

Views

Author

Peter Luschny, Dec 17 2017

Keywords

Crossrefs

Cf. A010842.

Programs

  • Maple
    a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 4 else
    (2*n-4)*a(n-3)+(3-3*n)*a(n-2)+(2+n)*a(n-1) fi end: seq(a(n), n=0..22);
  • Mathematica
    a[n_] := E^2 Sum[Gamma[k + 1, 2], {k,0,n-1}]; Table[a[n], {n,0,22}]

Formula

a(n) = (2*n-4)*a(n-3)+(3-3*n)*a(n-2)+(2+n)*a(n-1) for n >= 3.

A336997 a(n) = n! * Sum_{d|n} 2^(d - 1) / d!.

Original entry on oeis.org

1, 4, 10, 56, 136, 1952, 5104, 94208, 605056, 7741952, 39917824, 1458295808, 6227024896, 175463616512, 2353813878784, 48886264659968, 355687428161536, 17362063156969472, 121645100409094144, 6001501553433509888, 85800344155030552576, 2248030289949388439552
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[2^(d - 1)/d!, {d, Divisors[n]}], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[(Exp[2 x^k] - 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = n! * sumdiv(n, d, 2^(d-1)/d!); \\ Michel Marcus, Aug 12 2020

Formula

E.g.f.: Sum_{k>=1} (exp(2*x^k) - 1) / 2.
a(p) = p! + 2^(p - 1), where p is prime.

A134558 Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			Square array begins:
    1,    1,    1,     1,     1,     1,      1, ...
    1,    2,    3,     4,     5,     6,      7, ...
    2,    5,   10,    17,    26,    37,     50, ...
    6,   16,   38,    78,   142,   236,    366, ...
   24,   65,  168,   393,   824,  1569,   2760, ...
  120,  326,  872,  2208,  5144, 10970,  21576, ...
  720, 1957, 5296, 13977, 34960, 81445, 176112, ...
		

Crossrefs

Cf. a(n, 0) = A000142(n); a(n, 1) = A000522(n); a(n, 2) = A010842(n); a(n, 3) = A053486(n); a(n, 4) = A053487(n); a(n, 5) = A080954(n); a(n, 6) = A108869(n); a(1, k) = A000027(k+1); a(2, k) = A002522(k+1); a(n, n) = A063170(n); a(n, n+1) = A001865(n+1); a(n, n+2) = A001863(n+2).
Another version: A089258.
A transposed version: A080955.
Cf. A001113.

Programs

  • Mathematica
    T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)

Formula

a(n,k) = gamma(n+1,k)*e^k = Sum_{m=0..n} m!*binomial(n,m)*k^(n-m).
a(n,k) = n*a(n-1,k) + k^n for n,k > 0.
E.g.f. (by columns) is e^(kx)/(1-x).
a(n,k) = the binomial transform by columns of a(n,k-1).
Conjecture: a(n,k) is the permanent of the n X n matrix with k+1 on the main diagonal and 1 elsewhere.

Extensions

More terms from Amiram Eldar, Jun 27 2020

A180435 a(n) = a(n-1)*2^n+n, a(0)=1.

Original entry on oeis.org

1, 3, 14, 115, 1844, 59013, 3776838, 483435271, 123759429384, 63364827844617, 64885583712887818, 132885675443994251275, 544299726618600453222412, 4458903360459574912797999117, 73054672657769675371282417532942
Offset: 0

Views

Author

Georgi Guninski, Sep 05 2010

Keywords

Crossrefs

Cf. A010842.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a*2^(n+1)+n+1}; Transpose[NestList[nxt,{0,1},20]] [[2]] (* Harvey P. Dale, Apr 05 2015 *)
  • PARI
    a(n)=if(n<=0,1, a(n-1)*2^n+n )

Formula

a(n+1) = (2^(n + 1) + 1)*a(n) - 2^n*a(n - 1) + 1.
a(n+1) = ((a(n - 2) + 4*a(n - 1) + 4)*a(n) - 2*a(n - 1)^2 - 4*a(n)^2 + a(n - 2) - 4*a(n - 1))/(a(n - 2) - 2*a(n - 1)).
a(n) = 2^(n*(n+1)/2) + sum_{k=1..n} 2^( (n+k+1)*(n-k)/2 ) * k. - Max Alekseyev, Sep 05 2010

Extensions

Minor edits by N. J. A. Sloane, Sep 05 2010

A371686 Triangle read by rows: T(n, k) = e * binomial(n, k) * Gamma(k + 1, 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 15, 16, 1, 8, 30, 64, 65, 1, 10, 50, 160, 325, 326, 1, 12, 75, 320, 975, 1956, 1957, 1, 14, 105, 560, 2275, 6846, 13699, 13700, 1, 16, 140, 896, 4550, 18256, 54796, 109600, 109601, 1, 18, 180, 1344, 8190, 41076, 164388, 493200, 986409, 986410
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1,  2;
  [2] 1,  4,   5;
  [3] 1,  6,  15,  16;
  [4] 1,  8,  30,  64,   65;
  [5] 1, 10,  50, 160,  325,  326;
  [6] 1, 12,  75, 320,  975, 1956,  1957;
  [7] 1, 14, 105, 560, 2275, 6846, 13699, 13700;
		

Crossrefs

Cf. A000522 (main diagonal), A007526 (subdiagonal), A010842 (row sums), A000142 and A133942 (alternating row sums), A367963 (central terms).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*GAMMA(k + 1, 1)*exp(1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9);
  • Mathematica
    T[n_,k_]:=(n!/(n-k)!)*Sum[1/j!,{j,0,k}];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 06 2024 *)

Formula

T(n, k) = (n! / (n - k)!)*(Sum_{j = 0..k} (1 / j!)). - Detlef Meya, Apr 06 2024
Previous Showing 21-30 of 30 results.