Original entry on oeis.org
1, 3, 5, 10, 12, 17, 22, 38, 40, 45, 50, 66, 71, 87, 103, 168, 170, 175, 180, 196, 201, 217, 233, 298, 303, 319, 335, 400, 416, 481, 546, 872, 874, 879, 884, 900, 905, 921, 937, 1002, 1007, 1023, 1039, 1104, 1120, 1185, 1250, 1576, 1581, 1597, 1613, 1678, 1694
Offset: 1
A108869
E.g.f. : exp(6x)/(1-x).
Original entry on oeis.org
1, 7, 50, 366, 2760, 21576, 176112, 1512720, 13781376, 134110080, 1401566976, 15780033792, 191537187840, 2503044135936, 35120982067200, 527284915992576, 8439379765788672, 143486382677852160, 2582856448158007296
Offset: 0
-
a:=n->n!*sum(6^k/k!,k=0..n): seq(a(n),n=0..20); # Emeric Deutsch, Jul 18 2005
restart:F(x):=exp(6*x)/(1-x): f[0]:=F(x): for n from 1 to 20 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..18); # Zerinvary Lajos, Apr 03 2009
-
a[n_] := n! * Sum[6^k/k!, {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Jun 30 2020 *)
A343685
a(0) = 1; a(n) = 2 * n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k).
Original entry on oeis.org
1, 3, 19, 182, 2328, 37234, 714674, 16004064, 409587144, 11792756640, 377261048592, 13275818803488, 509646721402032, 21195285059025648, 949279217570464944, 45552467588773815744, 2331624264279599225088, 126804353256754734370176, 7301857349340031590836352, 443826900013575494233057536
Offset: 0
-
a[0] = 1; a[n_] := a[n] = 2 n a[n - 1] + Sum[Binomial[n, k] (n - k - 1)! a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(1 - 2 x + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
A080252
a(n) = n*a(n-1)+4*a(n-2)-4*(n-2)*a(n-3).
Original entry on oeis.org
0, 1, 2, 10, 40, 216, 1296, 9136, 73088, 658048, 6580480, 72386304, 868635648, 11292267520, 158091745280, 2371376195584, 37942019129344, 645014325264384, 11610257854758912, 220594899240681472, 4411897984813629440
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Feb 10 2003
-
A080252 := n -> (exp(2)*GAMMA(1+n,2) - exp(-2)*GAMMA(1+n,-2))/4:
seq(simplify(A080252(n)), n=0..20); # Peter Luschny, Dec 18 2017
-
c = CoefficientList[Series[(Sinh[z]*Cosh[z])/(1 - z), {z, 0, 25}], z]; For[n = 0, n < 25, n++; Print[c[[n]]*(n - 1)! ]]
RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==n*a[n-1]+4a[n-2]-4(n-2)* a[n-3]}, a,{n,20}] (* Harvey P. Dale, Nov 17 2013 *)
-
x='x+O('x^99); concat([0], Vec(serlaplace(sinh(x)*cosh(x)/(1-x)))) \\ Altug Alkan, Dec 18 2017
Original entry on oeis.org
1, 5, 29, 193, 1453, 12209, 113237, 1149241, 12675661, 151095569, 1937411429, 26614052617, 390244490749, 6087782363009, 100728768290645, 1762767028074937, 32542231109506285, 632202858036492593, 12895661952702667205
Offset: 0
-
with(LinearAlgebra):
c:= proc(n) option remember; add(n!/k!, k=0..n) end:
b:= n-> (-1)^(n+1) * Determinant(Matrix(n+2,
(i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))):
a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end:
seq(a(n), n=0..20); # Alois P. Heinz, Mar 24 2011
-
c[n_] := c[n] = Sum[n!/k!, {k, 0, n}]; b[n_] := (-1)^(n+1)*Det[Table[If[0 <= i+1-j, c[i+1-j], 0], {i, 1, n+2}, {j, 1, n+2}]]; a[n_] := Sum[b[k] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
A295518
a(n) = e^2 * Sum_{k=0..n-1} Gamma(k + 1, 2).
Original entry on oeis.org
0, 1, 4, 14, 52, 220, 1092, 6388, 43588, 341444, 3022660, 29835844, 324782916, 3864151876, 49875956548, 694041238340, 10356520497988, 164956188717892, 2793150548587332, 50100649026499396, 948943120107352900, 18925792541725471556, 396439630395708060484
Offset: 0
-
a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 4 else
(2*n-4)*a(n-3)+(3-3*n)*a(n-2)+(2+n)*a(n-1) fi end: seq(a(n), n=0..22);
-
a[n_] := E^2 Sum[Gamma[k + 1, 2], {k,0,n-1}]; Table[a[n], {n,0,22}]
A336997
a(n) = n! * Sum_{d|n} 2^(d - 1) / d!.
Original entry on oeis.org
1, 4, 10, 56, 136, 1952, 5104, 94208, 605056, 7741952, 39917824, 1458295808, 6227024896, 175463616512, 2353813878784, 48886264659968, 355687428161536, 17362063156969472, 121645100409094144, 6001501553433509888, 85800344155030552576, 2248030289949388439552
Offset: 1
-
Table[n! Sum[2^(d - 1)/d!, {d, Divisors[n]}], {n, 1, 22}]
nmax = 22; CoefficientList[Series[Sum[(Exp[2 x^k] - 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = n! * sumdiv(n, d, 2^(d-1)/d!); \\ Michel Marcus, Aug 12 2020
A134558
Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 10, 17, 26, 37, 50, ...
6, 16, 38, 78, 142, 236, 366, ...
24, 65, 168, 393, 824, 1569, 2760, ...
120, 326, 872, 2208, 5144, 10970, 21576, ...
720, 1957, 5296, 13977, 34960, 81445, 176112, ...
Cf. a(n, 0) =
A000142(n); a(n, 1) =
A000522(n); a(n, 2) =
A010842(n); a(n, 3) =
A053486(n); a(n, 4) =
A053487(n); a(n, 5) =
A080954(n); a(n, 6) =
A108869(n); a(1, k) =
A000027(k+1); a(2, k) =
A002522(k+1); a(n, n) =
A063170(n); a(n, n+1) =
A001865(n+1); a(n, n+2) =
A001863(n+2).
-
T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)
A180435
a(n) = a(n-1)*2^n+n, a(0)=1.
Original entry on oeis.org
1, 3, 14, 115, 1844, 59013, 3776838, 483435271, 123759429384, 63364827844617, 64885583712887818, 132885675443994251275, 544299726618600453222412, 4458903360459574912797999117, 73054672657769675371282417532942
Offset: 0
-
nxt[{n_,a_}]:={n+1,a*2^(n+1)+n+1}; Transpose[NestList[nxt,{0,1},20]] [[2]] (* Harvey P. Dale, Apr 05 2015 *)
-
a(n)=if(n<=0,1, a(n-1)*2^n+n )
A371686
Triangle read by rows: T(n, k) = e * binomial(n, k) * Gamma(k + 1, 1).
Original entry on oeis.org
1, 1, 2, 1, 4, 5, 1, 6, 15, 16, 1, 8, 30, 64, 65, 1, 10, 50, 160, 325, 326, 1, 12, 75, 320, 975, 1956, 1957, 1, 14, 105, 560, 2275, 6846, 13699, 13700, 1, 16, 140, 896, 4550, 18256, 54796, 109600, 109601, 1, 18, 180, 1344, 8190, 41076, 164388, 493200, 986409, 986410
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 2;
[2] 1, 4, 5;
[3] 1, 6, 15, 16;
[4] 1, 8, 30, 64, 65;
[5] 1, 10, 50, 160, 325, 326;
[6] 1, 12, 75, 320, 975, 1956, 1957;
[7] 1, 14, 105, 560, 2275, 6846, 13699, 13700;
-
T := (n, k) -> binomial(n, k)*GAMMA(k + 1, 1)*exp(1):
seq(seq(simplify(T(n, k)), k = 0..n), n = 0..9);
-
T[n_,k_]:=(n!/(n-k)!)*Sum[1/j!,{j,0,k}];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Apr 06 2024 *)
Comments