cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A130490 a(n) = Sum_{k=0..n} (k mod 12) (Partial sums of A010881).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 66, 67, 69, 72, 76, 81, 87, 94, 102, 111, 121, 132, 132, 133, 135, 138, 142, 147, 153, 160, 168, 177, 187, 198, 198, 199, 201, 204, 208, 213, 219, 226, 234, 243, 253, 264, 264, 265, 267, 270, 274, 279, 285, 292, 300
Offset: 0

Views

Author

Hieronymus Fischer, May 31 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 12, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    List([0..60], n-> Sum([0..n], k-> k mod 12 )); # G. C. Greubel, Sep 01 2019
  • Magma
    [&+[(k mod 12): k in [0..n]]: n in [0..60]]; // G. C. Greubel, Sep 01 2019
    
  • Maple
    seq(coeff(series(x*(1-12*x^11+11*x^12)/((1-x^12)*(1-x)^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 01 2019
  • Mathematica
    Sum[Mod[k, 12], {k, 0, Range[0, 60]}] (* G. C. Greubel, Sep 01 2019 *)
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,-1},{0,1,3,6,10,15,21,28,36,45,55,66,66},60] (* Harvey P. Dale, Jan 16 2024 *)
  • PARI
    a(n) = sum(k=0, n, k % 12); \\ Michel Marcus, Apr 29 2018
    
  • Sage
    [sum(k%12 for k in (0..n)) for n in (0..60)] # G. C. Greubel, Sep 01 2019
    

Formula

a(n) = 66*floor(n/12) + A010881(n)*(A010881(n) + 1)/2.
G.f.: (Sum_{k=1..11} k*x^k)/((1-x^12)*(1-x)).
G.f.: x*(1 - 12*x^11 + 11*x^12)/((1-x^12)*(1-x)^3).

A141726 Sawtooth with period length 9: repeat 8, 7, 6, 5, 4, 3, 2, 1, 0.

Original entry on oeis.org

8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3
Offset: 1

Views

Author

Paul Curtz, Sep 13 2008

Keywords

Comments

Continued fraction expansion of (23342+5*sqrt(44403565))/6961.
Decimal expansion of 973936900/111111111.

Crossrefs

Cf. A010878.

Programs

  • Mathematica
    PadRight[{},120,Range[8,0,-1]] (* Harvey P. Dale, Dec 23 2020 *)
  • Python
    def A141726(n): return (0, 8, 7, 6, 5, 4, 3, 2, 1)[n%9] # Chai Wah Wu, Jan 10 2023

Formula

a(n) = a(n-9).
G.f.: -x*(8+7*x+6*x^2+5*x^3+4*x^4+3*x^5+2*x^6+x^7)/((x-1)*(1+x+x^2)*(x^6+x^3+1)).

Extensions

Index in c-sequence corrected by R. J. Mathar, Sep 11 2009

A007960 Positive numbers k with the property that some permutation of the digits of k is a triangular number.

Original entry on oeis.org

1, 3, 6, 10, 12, 15, 19, 21, 28, 30, 36, 45, 51, 54, 55, 60, 63, 66, 78, 82, 87, 91, 100, 102, 105, 109, 117, 120, 123, 132, 135, 136, 147, 150, 153, 156, 163, 165, 168, 171, 174, 186, 190, 201, 208, 210, 213, 231, 235, 253, 258, 267, 276, 280, 285, 300, 306, 307
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Leading zeros may be omitted from the permutation of the digits of k to get T. But the number of digits of T must be <= the number of digits of k. - N. J. A. Sloane, Dec 14 2007
Working modulo 9, A010878(A000217(j)) is in the set {0, 1, 3, 6} for all j, never in {2, 4, 5, 7, 8}. Since permutation of decimal digits does not change values mod 9, A010878(n) is also one of {0,1,3,6}. - R. J. Mathar, Jan 08 2008

Examples

			Contains k=1, k=10, k=100, etc. derived from T=1.
Contains k=3, k=30, k=300, etc. derived from T=3.
Contains k=15, k=51, k=105, k=150, etc. derived from T=15.
		

Crossrefs

Cf. A000217.

Programs

  • Maple
    q:= n-> ormap(issqr, map(x-> 1+8*parse(cat(x[])),
            combinat[permute](convert(n, base, 10)))):
    select(q, [$1..500])[];  # Alois P. Heinz, Aug 22 2021
  • Mathematica
    Select[Range[500], Length[Select[FromDigits/@Permutations[ IntegerDigits[#]], IntegerQ[(Sqrt[1+8#]-1)/2]&]]>0&]  (* Marco RipĂ , Nov 07 2022 *)

Extensions

A large number of errors corrected by N. J. A. Sloane, Apr 15 1996
Edited, corrected and extended by R. J. Mathar, Jan 08 2008

A130910 Sum {0<=k<=n, k mod 16} (Partial sums of A130909).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 120, 121, 123, 126, 130, 135, 141, 148, 156, 165, 175, 186, 198, 211, 225, 240, 240, 241, 243, 246, 250, 255, 261, 268, 276, 285, 295, 306, 318, 331, 345, 360, 360, 361, 363, 366, 370, 375, 381, 388
Offset: 0

Views

Author

Hieronymus Fischer, Jun 11 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Mod[Range[0,60],16]] (* Harvey P. Dale, May 30 2020 *)

Formula

a(n)=120*floor(n/16)+A130909(n)*(A130909(n)+1)/2. - G.f.: g(x)=(sum{1<=k<16, k*x^k})/((1-x^16)(1-x)). Also: g(x)=x(15x^16-16x^15+1)/((1-x^16)(1-x)^3).
a(n) = +a(n-1) +a(n-16) -a(n-17). G.f. ( x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +12*x^11 +13*x^12 +14*x^13 +15*x^14) ) / ( (1+x) *(1+x^2) *(1+x^4) *(1+x^8) *(x-1)^2 ). - R. J. Mathar, Nov 05 2011

A134804 Remainder of triangular number A000217(n) modulo 9.

Original entry on oeis.org

0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6, 3, 1, 0, 0, 1, 3, 6, 1, 6
Offset: 0

Views

Author

R. J. Mathar, Jan 28 2008

Keywords

Comments

Periodic with period 9 since A000217(n+9) = A000217(n)+9(n+5) .
From Jacobsthal numbers A001045, A156060 = 0,1,1,3,5,2,3,7,4,0,8, = b(n). a(n)=A156060(n)*A156060(n+1) mod 9. Same transform (a(n)*a(n+1) mod 9 or b(n)*b(n+1) mod 9) in A157742, A158012, A158068, A158090. - Paul Curtz, Mar 25 2009

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 1, 3, 6, 1, 6, 3, 1, 0},105] (* Ray Chandler, Aug 26 2015 *)

Formula

a(n) = A010878(A000217(n)) = A010878(A055263(n)) = a(n-9).
O.g.f.: (-2x+2)/[3(x^2+x+1)]+(-3+3x^5)/(x^6+x^3+1)-7/[3(x-1)].

A169821 a(n) = n*n in carryless arithmetic mod 9 in base 10.

Original entry on oeis.org

0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 100, 121, 144, 160, 187, 117, 130, 154, 171, 100, 400, 441, 484, 430, 477, 427, 460, 414, 451, 400, 0, 61, 34, 0, 67, 37, 0, 64, 31, 0, 700, 781, 774, 760, 757, 747, 730, 724, 711, 700, 700, 711, 724, 730, 747, 757, 760, 774, 781, 700, 0, 31, 64
Offset: 0

Views

Author

Keywords

Comments

Addition and multiplication are the same as in school, that is, done in base 10, except that there are no carries and individual digits are added or multiplied mod 9.

Examples

			13*13 = 160:
..13
..13
----
..30
.13.
----
.160
----
		

Crossrefs

Cf. A010878, A169908. See A170990 for a better version.

A140816 A third of digital roots of Bernoulli number denominators.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1
Offset: 0

Views

Author

Paul Curtz, Jul 16 2008

Keywords

Formula

a(n)= A010878(A140814(n))/ 3.

Extensions

Edited and extended by R. J. Mathar, Jul 29 2008

A194597 Digital roots of the nonzero hexagonal numbers.

Original entry on oeis.org

1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3, 1, 3, 9, 1, 6, 6, 1, 9, 3
Offset: 1

Views

Author

Ant King, Aug 30 2011

Keywords

Comments

This is a periodic sequence with period 9 and cycle 1,6,6,1,9,3,1,3,9 - which are also the coefficients of x in the numerator of the generating function.
a(n) = A010888(A000384(n)). - Reinhard Zumkeller, Jan 09 2013

Examples

			The sixth nonzero hexagonal number is A000384(6)=66. As 6+6=12 and 1+2=3, this has digital root 3 and so a(6)=3.
		

Crossrefs

Programs

  • Haskell
    a194597 n = [1,6,6,1,9,3,1,3,9] !! a010878 (n-1)
    -- Reinhard Zumkeller, Jan 09 2013
    
  • Magma
    &cat[ [1,6,6,1,9,3,1,3,9]: k in [1..10] ]; // Vincenzo Librandi, Aug 11 2015
  • Mathematica
    DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[#]&,n];DigitalRoot[ # (2#-1)]&/@Range[63]
    CoefficientList[Series[(1 + 6 x + 6 x^2 + x^3 + 9 x^4 + 3 x^5 + x^6 + 3 x^7 + 9 x^8)/((1 - x) (1 + x + x^2) (1 + x^3 + x^6)), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 11 2015 *)
    PadRight[{},120,{1,6,6,1,9,3,1,3,9}] (* Harvey P. Dale, Oct 02 2018 *)

Formula

a(n) = a(n-9), and as the sum of the terms contained in each cycle is 39 they also satisfy the eighth-order inhomogeneous recurrence a(n) = 39 - a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6) - a(n-7) - a(n-8).
a(n) = 2 + cos(2/9*(n-5)*Pi) + cos(4/9*(n-5)*Pi) + cos(2/3*(n-5)*Pi) + cos(8/9*(n-5)*Pi) + cos(4/3*(n-5)*Pi) + cos(14/9*(n-5)*Pi) + cos(16/9*(n-5)*Pi) + cos((2 n Pi)/9) + cos((4 n Pi)/9) + cos((2 n Pi)/3) + cos((8 n Pi)/9) + cos((10 n Pi)/9) + cos((4 n Pi)/3) + cos((14 n Pi)/9) + cos((16 n Pi)/9) + cos(2/9 (2+5 n) Pi) + (8n + 5n^2 + 7n^3 + n^5 + n^7 + 6n^8) mod 9.
G.f.: x(1+6x+6x^2+x^3+9x^4+3x^5+x^6+3x^7+9x^8)/((1-x)(1+x+x^2)(1+x^3+x^6)).

A240597 Numbers k such that sigma(k) == k (mod 9).

Original entry on oeis.org

1, 15, 24, 42, 60, 64, 69, 78, 90, 100, 114, 123, 133, 147, 153, 177, 186, 198, 222, 231, 240, 258, 259, 270, 276, 288, 289, 306, 339, 360, 366, 393, 402, 403, 414, 429, 438, 447, 459, 474, 477, 492, 495, 501, 507, 511, 522, 582, 588, 594, 600
Offset: 1

Views

Author

Ivan N. Ianakiev, Sep 13 2014

Keywords

Comments

That is, numbers k that satisfy the following:
A010878(k) = A105852(k) or A010878(k) = A010878(A000203(k)).
A010888(k) = A190998(k) or A010888(k) = A010888(A000203(k)).

Examples

			sigma(15) = 24. 24 == 15 (mod 9), therefore 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Mod[#,9]==Mod[DivisorSigma[1,#],9]&]

Formula

A010888(a(n)) = A010888(A000203(a(n))).
A010888(a(n)) = A190998(a(n)).

A277547 a(n) = n/9^m mod 9, where 9^m is the greatest power of 9 that divides n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 2, 3, 4, 5, 6, 7, 8, 3, 1, 2, 3, 4, 5, 6, 7, 8, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 1, 2, 3, 4, 5, 6, 7, 8, 6, 1, 2, 3, 4, 5, 6, 7, 8, 7, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 19 2016

Keywords

Comments

a(n) is the rightmost nonzero digit in the base 9 expansion of n.

Examples

			a(11) = (11/9 mod 9) = 2.
		

Crossrefs

Cf. A010878.

Programs

  • Mathematica
    Table[Mod[n/9^IntegerExponent[n, 9], 9], {n, 1, 160}]
  • PARI
    a(n) = n/9^valuation(n, 9) % 9; \\ Michel Marcus, Oct 20 2016
Previous Showing 21-30 of 33 results. Next