cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A347000 The (m^n)-th prime, written as square array T(n,m) read by falling antidiagonals.

Original entry on oeis.org

2, 3, 2, 5, 7, 2, 7, 23, 19, 2, 11, 53, 103, 53, 2, 13, 97, 311, 419, 131, 2, 17, 151, 691, 1619, 1543, 311, 2, 19, 227, 1321, 4637, 8161, 5519, 719, 2, 23, 311, 2309, 10627, 28687, 38873, 19289, 1619, 2, 29, 419, 3671, 21391, 79349, 171529, 180503, 65687, 3671, 2
Offset: 1

Views

Author

Hugo Pfoertner, Aug 10 2021

Keywords

Examples

			The array begins
  2   3     5      7     11      13       17 ...
  2   7    23     53     97     151      227 ...
  2  19   103    311    691    1321     2309 ...
  2  53   419   1619   4637   10627    21391 ...
  2 131  1543   8161  28687   79349   185707 ...
  2 311  5519  38873 171529  567871  1549817 ...
  2 719 19289 180503 994837 3950183 12579617 ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,m_]:=Prime[m^n];Flatten[Table[Reverse[Table[T[n-m+1,m],{m,n}]],{n,10}]] (* Stefano Spezia, Aug 10 2021 *)

A067853 Numbers k such that k divides prime(k^2)+1.

Original entry on oeis.org

1, 2, 3, 8, 12, 37, 72, 73, 95, 472, 582, 735, 745, 1293, 1295, 1354, 2886, 6088, 7418, 7650, 8922, 9348, 9584, 14592, 25212, 34997, 36360, 102226, 114713, 160044, 190402, 376024
Offset: 1

Views

Author

Joseph L. Pe, Feb 15 2002

Keywords

Comments

a(32) > 3*10^5. [Donovan Johnson, Nov 15 2009]

Examples

			8 divides prime(8^2)+1 = 312 = 39*8, so 8 is a term of the sequence.
		

Crossrefs

Cf. A011757.

Programs

  • Mathematica
    Select[Range[10^4], Mod[Prime[ #^2] + 1, # ] == 0 &]

Extensions

a(24)-a(31) from Donovan Johnson, Nov 15 2009
a(32) from Amiram Eldar, Jul 23 2021

A109801 Cumulative sum of squares of primes indexed by squares.

Original entry on oeis.org

4, 53, 582, 3391, 12800, 35601, 87130, 183851, 359412, 652093, 1089014, 1772943, 2791024, 4214273, 6250602, 8871763, 12402404, 16994853, 22933822, 30446903, 39951792, 51930313, 66393122, 84125643, 105627412, 131140013, 161599374
Offset: 1

Views

Author

Jonathan Vos Post, Aug 15 2005

Keywords

Comments

Related to Prime(1^2) + prime(2^2) + ... + prime(n^2) (A109724).

Examples

			a(1) = 4 because (prime[1^2])^2 = (prime[1])^2 = 2^2.
a(2) = 53 because (prime[1^2])^2 + (prime[2^2])^2 = 2^2 + 7^2 = 4 + 49 = 53 (which is prime).
a(3) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 = 2^2 + 7^2 + 23^2 = 582.
a(4) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 + (prime[4^2])^2 = 2^2 + 7^2 + 23^2 + 53^2 = 3391 (which is prime).
a(32) = a(31) + (prime[32^2])^2 = 345995122 + 8161^2 = 412597043 (which is prime).
a(34) = a(33) + (prime[34^2])^2 = 488932212 + 9341^2 = 576186493 (which is prime).
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Prime[Range[30]^2]^2] (* Harvey P. Dale, Mar 28 2012 *)

Formula

(Prime[1^2])^2 + (prime[2^2])^2 + ... + (prime[n^2])^2. a(n+1) = a(n) + (A011757(n+1))^2.

A145317 Numbers n such that prime[(n + 1)^2] - prime[n^2] is a perfect cube.

Original entry on oeis.org

79, 10288, 16181, 306998, 394021
Offset: 1

Views

Author

Zak Seidov, Oct 07 2008

Keywords

Comments

n such that A011757(n + 1) - A011757(n) is a perfect cube

Examples

			p1=prime[(n + 1)^2], p= prime[n^2], p1-p2=q^3: n = 79, p1 = 63809, p = 62081, q = 12; n = 10288, p1 = 2163941687, p = 2163502711, q = 76; n = 16181, p1 = 5602364903, p = 5601635903, q = 90; n = 306998, p1=2596139184841, p = 2596121608841, q = 260. n = 394021, p1 = 4357072887373, p = 4357049981069, q = 284. Next n, if any, is > 500000.
		

Crossrefs

A145290 prime[(n + 1)^2] - prime[n^2] is a perfect square, A011757 prime(n^2).

Programs

  • Mathematica
    Select[Range[400000],IntegerQ[(Prime[(#+1)^2]-Prime[#^2])^(1/3)]&] (* Harvey P. Dale, Dec 13 2012 *)

A254955 Prime numbers indexed by oblong numbers.

Original entry on oeis.org

3, 13, 37, 71, 113, 181, 263, 359, 463, 601, 743, 911, 1091, 1291, 1511, 1747, 2017, 2297, 2617, 2903, 3271, 3617, 4003, 4409, 4831, 5297, 5743, 6247, 6761, 7297, 7853, 8443, 9029, 9631, 10271, 10973, 11717, 12413, 13109, 13879, 14717, 15461, 16301, 17191, 18059
Offset: 1

Views

Author

Waldemar Puszkarz, Feb 11 2015

Keywords

Examples

			a(1) = prime(1 + 1^2) = prime(2) = 3.
a(2) = prime(2 + 2^2) = prime(6) = 13.
		

Crossrefs

Cf. A000040, A002378 (n*(n+1)), A011756 (prime(n(n+1)/2)), A011757 (prime(n^2)).

Programs

  • Magma
    [NthPrime(n+n^2): n in [1..50]]; // Vincenzo Librandi, Feb 24 2015
  • Mathematica
    Table[Prime[n + n^2], {n, 100}] (* Puszkarz *)
    Prime[2Accumulate[Range[40]]] (* Alonso del Arte, Feb 11 2015 *)
  • PARI
    vector(80, n, prime(n+n^2)) \\ Michel Marcus, Feb 12 2015
    

Formula

a(n) = prime(n + n^2) = A000040(A002378(n)).

A259648 a(n) = floor( prime(n)^3 / (n*log(n)) ).

Original entry on oeis.org

19, 37, 61, 165, 204, 360, 412, 615, 1059, 1129, 1698, 2066, 2151, 2555, 3356, 4264, 4362, 5376, 5973, 6084, 7250, 7928, 9242, 11341, 12162, 12279, 13129, 13261, 14141, 19242, 20270, 22285, 22399, 26583, 26688, 28965, 31330, 32597, 35090, 37668, 37773, 43082
Offset: 2

Views

Author

Ilya Gutkovskiy, Jul 02 2015

Keywords

Crossrefs

Programs

  • Magma
    [Floor((NthPrime(n))^3/(n*Log(n))): n in [2..60]]; // Vincenzo Librandi, Jul 03 2015
  • Mathematica
    Table[Floor[Prime[n]^3/(n Log[n])], {n, 2, 30}]
  • PARI
    a(n) = floor(prime(n)^3/(n*log(n))); \\ Michel Marcus, Jul 02 2015
    

Formula

a(n) = floor( A030078(n) / (n*log(n))).

A299118 Squares s such that prime(s) + 2 is a square.

Original entry on oeis.org

1, 4, 9, 7745089
Offset: 1

Views

Author

Waldemar Puszkarz, Feb 02 2018

Keywords

Comments

Primes corresponding to the first four squares are 2, 7, 23, and 136866599. The sequence may be finite.
There may be no square s such that prime(s) + 1 is square (none was found up to 10^9).
This is a Diophantine problem of the form f(n^2) + A = m^2, where f(x) = prime(x), and the simplest case of A = 1 has probably no solutions unlike the same case with f(x) = primepi(x) that may even have an infinite number of solutions.

Examples

			prime(4) + 2 = 7 + 2 = 9, and both 4 and 9 are squares.
		

Crossrefs

Cf. A000290 (squares), A000040 (primes), A011757 (primes with square indices).

Programs

  • Mathematica
    Select[Range[10^4]^2, IntegerQ@Sqrt[Prime[#] + 2] &]
  • PARI
    for(n=1, 10^4, issquare(prime(n^2)+2)&&print1(n^2 ", "))
Previous Showing 31-37 of 37 results.