cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A356992 Then a(n) = n - b(n - b(n - b(n - b(n - b(n - b(n)))))) for n >= 2, where b(n) = A356988(n).

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48
Offset: 2

Views

Author

Peter Bala, Sep 08 2022

Keywords

Comments

The sequence is slow, that is, for n >= 2, a(n+1) - a(n) is either 0 or 1. The sequence is unbounded.
The line graph of the sequence {a(n)} thus consists of a series of plateaus (where the value of the ordinate a(n) remains constant as n increases) joined by lines of slope 1.
The sequence of plateau heights begins 4, 7, 11, 18, 29, 47, ..., conjecturally the Lucas sequence {A000032(k): k >= 3}.
The plateaus start at abscissa values n = 5, 10, 16, 26, 42, 68, .... Apart from the first term 5, this appears to be the sequence {2*Fibonacci(k): k >= 5}.
The plateaus end at abscissa values n = 7, 12, 19, 31, 50, 81, ..., conjecturally the sequence {A013655(k): k >= 3}.
The sequence of plateau lengths begins 2, 2, 3, 5, 8, 13, .... Apart from the first term 2, this appears to be the sequence {Fibonacci(k): k >= 3}.
The slow sequences {a(a(n)): n >= 3} and {a(a(a(n))): n >= 4} appear to have similar properties to the present sequence. The slow sequence {n - a(n): n >= 2} appears to have plateaus at heights given by the Fibonacci sequence. See the Example section.

Examples

			Related sequences:
1) {n - a(n): n >= 2}
  1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 35, 36, 37, ...
The line graph of the sequence has plateaus at heights 3, 5, 8, 13, 21, 34, ..., conjecturally the Fibonacci numbers A000045.
2) {a(a(n)): n >= 3}
  1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 47, 47, 47, 47, ...
The line graph of the sequence has plateaus at heights 3, 4, 7, 11, 28, 29, ..., conjecturally the Lucas numbers A000045.
3) {a(a(a(n))): n >= 4}
  1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 29, 29, 29, ...
The line graph of the sequence has plateaus at heights (2), 3, 4, 7, 11, 28, 29, ..., conjecturally the Lucas numbers A000045.
		

Crossrefs

Programs

  • Maple
    b := proc(n) option remember; if n = 1 then 1 else n - b(b(n - b(b(b(n-1))))) end if; end proc:
    seq(n - b(n - b(n - b(n - b(n - b(n - b(n)))))), n = 2..100);

A013915 a(n) = F(n) + L(n) + n, where F(n) (A000045) and L(n) (A000204) are Fibonacci and Lucas numbers respectively.

Original entry on oeis.org

3, 3, 7, 10, 16, 24, 37, 57, 89, 140, 222, 354, 567, 911, 1467, 2366, 3820, 6172, 9977, 16133, 26093, 42208, 68282, 110470, 178731, 289179, 467887, 757042, 1224904, 1981920, 3206797, 5188689, 8395457, 13584116, 21979542, 35563626, 57543135
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    I:=[3, 3, 7, 10]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012
  • Mathematica
    LinearRecurrence[{3,-2,-1, 1},{3,3,7,10},40] (* Vincenzo Librandi, Feb 14 2012 *)

Formula

a(n) = a(n-1) + a(n-2) - n + 3.
From R. J. Mathar, Nov 04 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (-3 + 6*x - 4*x^2 + 2*x^3)/((x^2+x-1) * (x-1)^2).
a(n) = n + A013655(n). (End)

Extensions

More terms from Erich Friedman

A014717 a(n) = (F(n+1) + L(n))^2 where F(n) are the Fibonacci numbers (A000045) and L(n) are the Lucas numbers (A000032).

Original entry on oeis.org

9, 4, 25, 49, 144, 361, 961, 2500, 6561, 17161, 44944, 117649, 308025, 806404, 2111209, 5527201, 14470416, 37884025, 99181681, 259660996, 679801329, 1779742969, 4659427600, 12198539809, 31936191849, 83610035716, 218893915321, 573071710225, 1500321215376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(Fibonacci(n+1) + Lucas(n))^2: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
  • Mathematica
    Table[(Fibonacci[n+1] + LucasL[n])^2, {n, 0, 30}] (* Michael De Vlieger, Apr 24 2015 *)
  • PARI
    lucas(n) = if(n==0, 2, fibonacci(2*n)/fibonacci(n))
    a(n) = (fibonacci(n+1)+lucas(n))^2 \\ Colin Barker, Apr 24 2015
    
  • PARI
    Vec( (9-14*x-x^2)/((1+x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Apr 23 2015
    
  • PARI
    a(n) = (2*fibonacci(n+1)+fibonacci(n-1))^2
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3). - Colin Barker, Apr 23 2015
G.f.: (9 - 14*x - x^2)/ ((1+x)*(1-3*x+x^2)). - Colin Barker, Apr 23 2015
a(n) = A013655(n)^2. - Hartmut F. W. Hoft, Apr 24 2015
a(n) = (1/5)*(22*(-1)^n + 19*Fibonacci(2*n) + 23*Fibonacci(2*n-1)). - Ehren Metcalfe, Mar 26 2016
a(n) = (2^(-1-n)*(11*(-1)^n*2^(2+n) + (23-3*sqrt(5))*(3-sqrt(5))^n + (3+sqrt(5))^n*(23+3*sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = 3*a(n-1) - a(n-2) + 22*(-1)^n. - Greg Dresden, May 18 2020

Extensions

Name corrected by Colin Barker, Apr 24 2015

A104450 Number of representations of n as a sum of distinct elements of the Fibonacci-type sequence beginning 3, 2, 5, 7, 12, 19, 31, 50, ....

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 2, 0, 3, 0, 2, 2, 0, 3, 0, 3, 1, 2, 3, 0, 4, 0, 3, 2, 1, 3, 0, 4, 0, 3, 3, 0, 5, 0, 4, 2, 2, 4, 0, 5, 0, 3, 3, 0, 4, 0, 4, 1, 3, 4, 0, 6, 0, 5, 3, 2, 5, 0, 6, 0, 4, 4, 0, 6, 0, 5, 2, 3, 5, 0, 6, 0, 4, 3, 1, 4, 0, 5, 0, 4, 4, 0, 7, 0, 6, 3, 3, 6, 0, 8, 0, 5, 5, 0, 7, 0, 6, 2, 4, 6, 0
Offset: 0

Views

Author

Casey Mongoven, Mar 08 2005

Keywords

Crossrefs

Cf. A013655.

Extensions

a(0)=1 corrected by Alois P. Heinz, Sep 16 2015

A282465 a(n) = 11*Fibonacci(n+3) + Fibonacci(n-8) with n>=0.

Original entry on oeis.org

1, 46, 47, 93, 140, 233, 373, 606, 979, 1585, 2564, 4149, 6713, 10862, 17575, 28437, 46012, 74449, 120461, 194910, 315371, 510281, 825652, 1335933, 2161585, 3497518, 5659103, 9156621, 14815724, 23972345, 38788069, 62760414, 101548483, 164308897, 265857380, 430166277
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2017

Keywords

Comments

Similar sequences with the formula h*Fibonacci(n+k) + Fibonacci(n+k-h):
h= 1, k=-1: A000045;
h= 2, k= 1: A013655;
h= 3, k=-2: A118658 = 2*A212804;
h= 4, k= 2: A022379 = 3*A000204;
h= 5, k= 1: A022113;
h= 6, k= 2: A022125;
h= 7, k= 3: A097657;
h= 8, k= 2: A022355 = 21*A000045;
h= 9, k= 3: 10, 32, 42, 74, 116, 190, 306, 496, 802, ... = 2*A022140;
h=10, k= 3: 33, 22, 55, 77, 132, 209, 341, 550, 891, ... = 11*A013655;
h=11, k= 3: this sequence.

Crossrefs

Cf. sequences with g.f. (1 + r*x)/(1 - x - x^2) for r = 2..31, respectively: A000204, A000285, A022095 - A022110, A022391 - A022402.

Programs

  • Magma
    [11*Fibonacci(n+3)+Fibonacci(n-8): n in [0..40]];
    
  • Mathematica
    Table[11 Fibonacci[n + 3] + Fibonacci[n - 8], {n, 0, 40}]
    LinearRecurrence[{1,1},{1,46},36] (* or *) CoefficientList[Series[(1 + 45*x)/(1 - x - x^2) , {x,0,35}],x] (* Indranil Ghosh, Feb 22 2017 *)
  • PARI
    a(n) = 11*fibonacci(n+3) + fibonacci(n-8) \\ Indranil Ghosh, Feb 23 2017

Formula

G.f.: (1 + 45*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
a(n) = a(i)*Fibonacci(n-i+1) + a(i-1)*Fibonacci(n-i). Examples:
for i= 3, a(3)=93, a(2)= 47: a(n) = 93*Fibonacci(n-2) + 47*Fibonacci(n-3);
for i=-1, a(-1)=45, a(-2)=-44: a(n) = 45*Fibonacci(n+2) - 44*Fibonacci(n+1).
Other formulae:
a(n) = 44*Fibonacci(n) + Fibonacci(n+2),
a(n) = 45*Fibonacci(n) + Fibonacci(n+1),
a(n) = 46*Fibonacci(n) + Fibonacci(n-1),
a(n) = 47*Fibonacci(n) - Fibonacci(n-2).
a(n) = ((91 + sqrt(5))*((1 + sqrt(5))/2)^n - (91 - sqrt(5))*((1 - sqrt(5))/2)^n)/sqrt(20).

A217762 Square array T, read by antidiagonals: T(n,k) = F(n) + 2*F(k) where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 2, 1, 2, 3, 1, 4, 3, 3, 2, 6, 5, 3, 4, 3, 10, 7, 5, 4, 5, 5, 16, 11, 7, 6, 5, 7, 8, 26, 17, 11, 8, 7, 7, 10, 13, 42, 27, 17, 12, 9, 9, 10, 15, 21, 68, 43, 27, 18, 13, 11, 12, 15, 23, 34, 110, 69, 43, 28, 19, 15, 14, 17, 23, 36, 55, 178, 111, 69, 44, 29, 21
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2013

Keywords

Examples

			Square array begins:
...0....2....2....4....6...10...16...26...42...
...1....3....3....5....7...11...17...27...43...
...1....3....3....5....7...11...17...27...43...
...2....4....4....6....8...12...18...28...44...
...3....5....5....7....9...13...19...29...45...
...5....7....7....9...11...15...21...31...47...
...8...10...10...12...14...18...24...34...50...
..13...15...15...17...19...23...29...39...55...
..21...23...23...25...27...31...37...47...63...
..34...36...36...38...40...44...50...60...76...
..55...57...57...59...61...65...71...81...97...
..89...91...91...93...95...99..105..115..131...
.144..146..146..148..150..154..160..170..186...
...
		

Crossrefs

Formula

T(n,0) = A000045(n).
T(1,k) = A001588(k).
T(n,1) = T(n,2) = A157725(n).
T(n,3) = A157727(n).
T(n,n)= A022086(n) = 3*A000045(n).
T(n+1,n) = A000032(n+1) = A000204(n+1).
T(n+2,n) = A000285(n).
T(n+3,n) = A013655(n+1) = A001060(n+1).
T(n+4,n) = A021120(n).
T(n+5,n) = A022088(n+2) = 5*A000045(n+2).
T(n+6,n) = A022097(n+2).
T(n+7,n) = A022122(n+2).
T(n+8,n) = 3*A013655(n+2).
T(n+9,n) = A097657(n+2).
T(n+10,n) = A022118(n+4).
T(n,n+1) = A000045(n+3).
T(n,n+2) = A013655(n+1) = A001060(n+1).
T(n,n+3) = A000032(n+3).
T(n,n+4) = A022095(n+2).
T(n,n+5) = A022120(n+2).
T(n,n+6) = A022136(n+2).
T(n,n+7) = A022098(n+4).
T(n,n+8) = A022380(n+4).
T(n,n+9) = A206419(n+6).
Sum(T(n-k,k), 0<=k<=n) = 3*A000071(n+2).

A271315 Array T(n,k) read by diagonals: T(n,k) = T(n,k-1) + T(n,k-2) where T(n,0) = F(n+1), T(n,1) = F(n); F(n) = Fibonacci(n) = A000045(n).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 3, 2, 5, 3, 5, 4, 5, 3, 8, 5, 8, 7, 7, 8, 5, 13, 8, 13, 11, 12, 11, 13, 8, 21, 13, 21, 18, 19, 19, 18, 21, 13, 34, 21, 34, 29, 31, 30, 31, 29, 34, 21, 55, 34, 55, 47, 50, 49, 49, 50, 47, 55, 34, 89
Offset: 0

Views

Author

Bob Selcoe, Apr 03 2016

Keywords

Comments

The array is built by treating rows as Fibonacci-type sequences with seed values being two consecutive Fibonacci numbers (A000045(n) = F(n)) in reverse order: For row n, a(0) = F(n+1), a(1) = F(n). As a result, columns are Fibonacci-type sequences with seed values b(0) = F(k-1), b(1) = F(k+1); so starting with T(n,1), Row n == Column k=n+1.
Therefore, an alternative title is: Array T(n,k) read by diagonals: T(n,k) = T(n-1,k) + T(n-2,k) where T(0,k) = F(k-1) and T(1,k) = F(k+1), k>=1.
Patterns exist for certain generalized (a,b)-Pascal triangle transforms of row sequences. Definitions, explanation and examples: (Start)
Define (a,b)-Pascal triangles as having conditions T(0,0) = 1, a = left boundary and b = right boundary.
Let R_n be Row n, and R_n(k) be terms k in sequence R_n.
Let Tr_(k) be the (a,b)-Pascal triangle transform of R_n; define Tr_n(k) as when a = R_n(1) and b = R_n(0). Then Tr_n(k) = R_n(n+2k-2), k>=1. (Trivially, Tr_n(0) = R_n(0)).
For example, n=4: R_4 = {5, 3, 8, 11, 19, 30, 49, 79, 128, 207, 335, 542...}; a=3, b=5.
(3,5)-Pascal triangle is:
1
3 5
3 8 5
3 11 13 5
3 14 24 18 5
etc.
Transform Tr_4(k) is:
Tr_4(0) = 5*1 = 5 = R_4(0).
Tr_4(1) = 5*3 + 3*5 = 30 = R_4(5).
Tr_4(2) = 5*3 + 3*8 + 8*5 = 79 = R_4(7).
Tr_4(3) = 5*3 + 3*11 + 8*13 + 11*5 = 207 = R_4(9).
Tr_4(4) = 5*3 + 3*14 + 8*24 + 11*18 + 19*5 = 542 = R_4(11).
etc.
Examples of sequences where such transforms apply:
Tr_0 = A001906 starting A001906(0)=0.
Tr_1 = A001519 starting A001519(2)=2.
Tr_2 = A002878 starting A002878(1)=4.
Tr_4 = A167375 starting A167375(3)=30.
(End)

Examples

			Array Starts:
  n/k   0   1   2    3    4    5    6    7     8     9     10
  0     1   0   1    1    2    3    5    8     13    21    34
  1     1   1   2    3    5    8    13   21    34    55    89
  2     2   1   3    4    7    11   18   29    47    76    123
  3     3   2   5    7    12   19   31   50    81    131   212
  4     5   3   8    11   19   30   49   79    128   207   335
  5     8   5   13   18   31   49   80   129   209   338   547
  6     13  8   21   29   50   79   129  208   337   545   882
  7     21  13  34   47   81   128  209  337   546   883   1429
  8     34  21  55   76   131  207  338  545   883   1428  2311
  9     55  34  89   123  212  335  547  882   1429  2311  3740
  10    89  55  144  199  343  542  885  1427  2312  3739  6051
Row 7 starts {21,13} because A000045(8)=21 and A000045(7)=13.
T(9,2)=89 + T(9,3)=123 = T(9,4)=212; alternatively, T(7,4)=81 + T(8,4)=131 = T(9,4)=212.
		

Crossrefs

Cf. A000045 (Fibonacci numbers).
Cf. additional sequences related to rows and columns: A000032 (Lucas numbers), A013655, A022121, A022138, A206610.
Cf. sequences related to falling diagonals: A061646, A079472.
Cf. sequences related to (a,b)-Pascal triangle transforms of rows: A001906, A001519, A002878, A167375.

Programs

  • PARI
    {T(n, k) = fibonacci(n) * fibonacci(k) + fibonacci(n+1) * fibonacci(k-1)}; /* Michael Somos, Apr 03 2016 */

Formula

T(n,k) = T(n,k-1) + T(n,k-2) = T(n-1,k) + T(n-2,k).
T(n,n) = T(n-1,n+1) = A061646(n).
T(n,n+1) = A079472(n+1). Omitting T(n,0), the array is symmetric about this falling diagonal.
Treating rows and columns as individual sequences, let R_n be Row n and C_k be Column k; let R_n(k) and C_k(n) be terms k and n, respectively, in these sequences:
C_0(n) = A000045(n+1).
R_0(k) = A000045(k-1); C_1(n) = A000045(n).
R_1(k) = A000045(k+1); C_2(n) = A000045(n+2).
R_2(k) = A000032(k); C_3(n) = A000032(n+1) .
R_3(k) = A013655(k); C_4(n) = A013655(n+1).
R_4(k) = A022121(k-1); C_5(n) = A022121(n).
R_5(k) = A022138(k-1); C_6(n) = A022138(n).
R_6(k) = A206610(k+1); C_7(n) = A206610(n+2).
Previous Showing 21-27 of 27 results.