cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 145 results. Next

A082544 Number of ordered quintuples (a,b,c,d,e) with gcd(a,b,c,d,e)=1 (1<= {a,b,c,d,e} <= n).

Original entry on oeis.org

1, 31, 241, 991, 3091, 7501, 16531, 31711, 57781, 96601, 157651, 240031, 362491, 519961, 739201, 1012441, 1383721, 1822711, 2409241, 3091441, 3966301, 4974751, 6257461, 7680781, 9481681, 11474941, 13916191, 16610371, 19911151, 23435191
Offset: 1

Views

Author

Benoit Cloitre, May 11 2003

Keywords

Crossrefs

Column k=5 of A344527.
Cf. A018805 (pairs), A071778 (triples), A082540 (quadruples), A343978.
Cf. A015650.

Programs

  • PARI
    a(n)=sum(k=1,n,moebius(k)*floor(n/k)^5)
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A082544(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A082544(k1)
            j, k1 = j2, n//j2
        return n*(n**4-1)-c+j # Chai Wah Wu, Mar 29 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^5; a(n) is asymptotic to c*n^5 with c=0.9643....
Lim_{n->infinity} a(n)/n^5 = 1/zeta(5) = A343308. - Karl-Heinz Hofmann, Apr 11 2021
Lim_{n->infinity} n^5/a(n) = zeta(5) = A013663. - Karl-Heinz Hofmann, Apr 11 2021
a(n) = n^5 - Sum_{k=2..n} a(floor(n/k)). - Seiichi Manyama, Sep 13 2024

A136676 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^5.

Original entry on oeis.org

1, 31, 7565, 241837, 755989457, 755889457, 12705011703799, 406547611705943, 98792790681344149, 98791774426324117, 15910615688635928566967, 15910549913780913466967, 5907492176026179821253778331
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

a(n) is prime for n in A136685.
Lim_{n -> infinity} a(n)/A334604(n) = A267316 = (15/16)*A013663. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 31/32, 7565/7776, 241837/248832, 755989457/777600000, 755889457/777600000, ... = a(n)/A334604(n). - _Petros Hadjicostas_, May 07 2020
		

Crossrefs

Programs

  • Mathematica
    Table[ Numerator[ Sum[ (-1)^(k+1)/k^5, {k,1,n} ] ], {n,1,30} ]
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^5)); \\ Michel Marcus, May 07 2020

A255050 G.f.: Product_{j>=1} 1/(1-x^j)^binomial(j+3,3).

Original entry on oeis.org

1, 4, 20, 80, 305, 1072, 3622, 11676, 36450, 110240, 324936, 935076, 2635338, 7285560, 19795370, 52930360, 139462956, 362471020, 930186694, 2358867240, 5915606398, 14680528648, 36073675792, 87816701332, 211891552280, 506981067168, 1203337174120, 2834401172172
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2015

Keywords

Comments

Number of partitions of n unlabeled objects of 4 colors. - Peter Dolland, Feb 20 2025

Crossrefs

Column k=4 of A075196.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local d, j; `if`(n=0, 1,
          add(add(d*binomial(d+3, 3), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50); # after Alois P. Heinz
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^j)^Binomial[j+3,3],{j,1,nmax}],{x,0,nmax}],x]

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^C(j+3,3).
a(n) ~ Zeta(5)^(829/3600) * exp(11/72 - Zeta(3)/(4*Pi^2) + Zeta'(-3)/6 - 121*Zeta(3)^2 / (360*Zeta(5)) - Pi^6/(1800*Zeta(5)) + 11*Pi^8*Zeta(3) / (108000*Zeta(5)^2) - Pi^16/(194400000*Zeta(5)^3) + Pi^2 * n^(1/5)/ (6*2^(2/5) * Zeta(5)^(1/5)) - 11*Pi^4 * Zeta(3) * n^(1/5) / (900*2^(2/5)*Zeta(5)^(6/5)) + Pi^12 * n^(1/5) / (1350000 * 2^(2/5) * Zeta(5)^(11/5)) + 11*Zeta(3) * n^(2/5) / (6*2^(4/5) * Zeta(5)^(2/5)) - Pi^8 * n^(2/5) / (9000 * 2^(4/5) * Zeta(5)^(7/5)) + Pi^4 * n^(3/5) / (90 * 2^(1/5) * Zeta(5)^(3/5)) + 5 * Zeta(5)^(1/5) * n^(4/5) / 2^(8/5)) / (A^(11/6) * 2^(971/1800) * 5^(1/2) * Pi * n^(2629/3600)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant, Zeta(3) = A002117 = 1.202056903..., Zeta(5) = A013663 = 1.036927755... and Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4 = 0.0053785763577743... .
EULER transform of 1, 4, 10, 20, 35, 56, 84, ... (= A000292(n+1)). - Peter Dolland, Feb 20 2025

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

Original entry on oeis.org

2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Comments

Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017

Examples

			0.2288103976033537597687461489416887919325093427198821602294071...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

Formula

Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).

A267316 Decimal expansion of the Dirichlet eta function at 5.

Original entry on oeis.org

9, 7, 2, 1, 1, 9, 7, 7, 0, 4, 4, 6, 9, 0, 9, 3, 0, 5, 9, 3, 5, 6, 5, 5, 1, 4, 3, 5, 5, 3, 4, 6, 9, 5, 3, 2, 5, 5, 3, 5, 1, 3, 3, 6, 2, 0, 3, 3, 0, 4, 3, 2, 6, 1, 2, 2, 5, 8, 0, 5, 6, 3, 5, 5, 3, 4, 8, 1, 5, 8, 6, 5, 4, 2, 4, 6, 3, 8, 8, 9, 1, 7, 7, 5, 0, 4, 0, 4, 1, 2, 3, 9, 7, 3, 1, 2, 5, 0, 2, 8, 5, 5, 8, 9, 4, 0, 7, 0, 1, 2, 4, 8, 9, 6, 8, 2, 0, 9, 7, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			1/1^5 - 1/2^5 + 1/3^5 - 1/4^5 + 1/5^5 - 1/6^5 + ... = 0.972119770446909305935655143553469532553513362...
		

Crossrefs

Cf. A002162 (value at 1), A013663, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A136676, A334604.

Programs

  • Mathematica
    RealDigits[(15 Zeta[5])/16, 10, 120][[1]]
  • PARI
    15*zeta(5)/16 \\ Michel Marcus, Feb 01 2016
    
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s += -((-1)^i/((i)^5))
    print(s) # Terry D. Grant, Aug 05 2016

Formula

Equals Sum_{k > 0} (-1)^(k+1)/k^5 = (15*zeta(5))/16.
Equals Lim_{n -> infinity} A136676(n)/A334604(n). - Petros Hadjicostas, May 07 2020

A293904 Decimal expansion of zeta(21).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 7, 6, 9, 3, 2, 9, 8, 6, 7, 8, 7, 8, 0, 6, 4, 6, 3, 1, 1, 6, 7, 1, 9, 6, 0, 4, 3, 7, 3, 0, 4, 5, 9, 6, 6, 4, 4, 6, 6, 9, 4, 7, 8, 4, 9, 3, 7, 6, 0, 0, 2, 0, 7, 4, 8, 7, 3, 7, 6, 5, 9, 6, 8, 3, 9, 0, 8, 7, 8, 9, 8, 1, 5, 9, 8, 3, 3, 8, 7, 6, 6
Offset: 1

Views

Author

Frank Ellermann, Oct 19 2017

Keywords

Comments

Web searches find 1.0000004769329867878 in Python tools. Simon Plouffe published 1000 digits for zeta(9) up to zeta(2051) many years ago.

Examples

			1.000000476932986787806...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[21], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)

A344219 Number of cyclic subgroups of the group (C_n)^5, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 32, 122, 528, 782, 3904, 2802, 8464, 9923, 25024, 16106, 64416, 30942, 89664, 95404, 135440, 88742, 317536, 137562, 412896, 341844, 515392, 292562, 1032608, 488907, 990144, 803804, 1479456, 732542, 3052928, 954306, 2167056, 1964932, 2839744, 2191164, 5239344, 1926222
Offset: 1

Views

Author

Seiichi Manyama, May 12 2021

Keywords

Comments

Inverse Moebius transform of A160893.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, i, sumdiv(n, j, sumdiv(n, k, sumdiv(n, l, sumdiv(n, m, eulerphi(i)*eulerphi(j)*eulerphi(k)*eulerphi(l)*eulerphi(m)/eulerphi(lcm([i, j, k, l, m])))))));
    
  • PARI
    a160893(n) = sumdiv(n, d, moebius(n/d)*d^5)/eulerphi(n);
    a(n) = sumdiv(n, d, a160893(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, x_3|n, x_4|n, x_5|n} phi(x_1)*phi(x_2)*phi(x_3)*phi(x_4)*phi(x_5)/phi(lcm(x_1, x_2, x_3, x_4, x_5)).
If p is prime, a(p) = 1 + (p^5 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^5 - 1)/(p - 1))*((p^(4*e) - 1)/(p^4 - 1)).
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)/5) * Product_{p prime} (1 + 1/p^2 + 1/p^3 + 1/p^4 + 1/p^5) = 0.3939461744... . (End)

A206624 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).

Original entry on oeis.org

1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

Convolution of A023873 and A248883. - Vaclav Kotesovec, Aug 19 2015
In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015
If m is even and m >= 2, then can be simplified as: a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + (-1)^(m/2) * Gamma(m+1) * Zeta(m+1) / (2^(m+1) * Pi^m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *...
Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]:
A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).
		

Crossrefs

Cf. A015128 (m=0), A156616 (m=1), A206622 (m=2), A206623 (m=3), A001160 (sigma_5).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_5(2*n) - sigma_5(n))/16 * x^n/n ), where sigma_5(n) is the sum of 5th powers of divisors of n (A001160).
Inverse Euler transform has g.f.: x*(2 + 31*x + 152*x^2 + 341*x^3 + 460*x^4 + 341*x^5 + 152*x^6 + 31*x^7 + 2*x^8)/(1-x^2)^5.
a(n) ~ exp(3*2^(2/3)*Pi*n^(5/6)/5 + 3*Zeta(5)/(4*Pi^4)) / (2^(7/6) * 3^(1/2) * n^(7/12)), where Zeta(5) = A013663. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017

A255052 G.f.: Product_{j>=1} 1/(1-x^j)^binomial(j+4,4).

Original entry on oeis.org

1, 5, 30, 145, 660, 2777, 11160, 42805, 158490, 568050, 1980607, 6735380, 22402610, 73022755, 233692345, 735350970, 2278153310, 6956560935, 20958613740, 62354061740, 183332498533, 533074229590, 1533842417185, 4369816273820, 12332669124455, 34495668855729
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 08 2015

Keywords

Comments

In general, if g.f. = product_{j>=1} 1/(1-x^j)^binomial(j+k-1,k-1), k>=1, then log(a(n)) ~ (1+1/k) * k^(1/(k+1)) * Zeta(k+1)^(1/(k+1)) * n^(k/(k+1)).

Crossrefs

Column k=5 of A075196.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local d, j; `if`(n=0, 1,
          add(add(d*binomial(d+4, 4), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # after Alois P. Heinz
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^j)^Binomial[j+4,4],{j,1,nmax}],{x,0,nmax}],x]

Formula

G.f.: Product_{j>=1} 1/(1-x^j)^C(j+4,4).
a(n) ~ Pi^(49/288) * exp(25/144 - 105*Zeta(3) / (8*Pi^2) + 5*Zeta'(-3)/12 + 29299*Zeta(5) / (128*Pi^4) + 2480625 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) - 72930375 * Zeta(5)^3 / (2*Pi^14) + 1063324867500 * Zeta(5)^5 / Pi^24 + 41 * 7^(1/6) * Pi * n^(1/6) / (768*3^(1/2)) - 2625 * 3^(1/2) * 7^(1/6) * Zeta(3) * Zeta(5) * n^(1/6) / (2*Pi^7) + 540225 * 3^(1/2) * 7^(1/6) * Zeta(5)^2 * n^(1/6) / (16*Pi^9) - 4740474375 * 3^(1/2) * 7^(1/6) * Zeta(5)^4 * n^(1/6) / (4*Pi^19) + 25 * 7^(1/3) * Zeta(3) * n^(1/3) / (4*Pi^2) - 735 * 7^(1/3) * Zeta(5) * n^(1/3) / (8*Pi^4) + 3969000 * 7^(1/3) * Zeta(5)^3 * n^(1/3) / Pi^14 + 7^(3/2) * Pi * n^(1/2) / (3^(3/2)*8) - 4725 * 21^(1/2) * Zeta(5)^2 * n^(1/2) / Pi^9 + 45 * 7^(2/3) * Zeta(5) * n^(2/3) / (2*Pi^4) + 2 * 3^(1/2) * Pi * n^(5/6) / (5 * 7^(1/6))) / (A^(25/12) * 2^(3/2) * 3^(625/576) * 7^(337/1728) * n^(1201/1728)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant, Zeta(3) = A002117 = 1.202056903..., Zeta(5) = A013663 = 1.036927755... and Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4 = 0.0053785763577743... .

A258352 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)/6).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 21, 39, 76, 145, 294, 581, 1169, 2276, 4435, 8494, 16237, 30768, 58221, 109466, 205223, 382658, 710808, 1314091, 2420437, 4439753, 8115645, 14781062, 26833241, 48550863, 87575527, 157480827, 282362462, 504819198, 900058558, 1600424247
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: binomial(n, 3))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 + Zeta(3)/(8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2/(90*Zeta(5)) + Zeta'(-3)/6 + (-Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5))) * n^(2/5) - Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5 * Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.
Previous Showing 31-40 of 145 results. Next