cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 66 results. Next

A248884 Expansion of Product_{k>=1} (1+x^k)^(k^5).

Original entry on oeis.org

1, 1, 32, 275, 1763, 12421, 85808, 561074, 3535678, 21815897, 131733641, 778099521, 4505634324, 25635135074, 143507764032, 791243636305, 4300983535471, 23070300486656, 122213931799869, 639848848696540, 3312824859756453, 16972058378914997, 86082216143323410
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 05 2015

Keywords

Comments

In general, for m > 0, if g.f. = Product_{k>=1} (1+x^k)^(k^m), then a(n) ~ 2^(zeta(-m)) * ((1-2^(-m-1)) * Gamma(m+2) * zeta(m+2))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((1-2^(-m-1)) * Gamma(m+2) * zeta(m+2))^(1/(m+2)) * n^((m+1)/(m+2))) / (sqrt(2*Pi*(m+2)) * n^((m+3)/(2*m+4))).

Crossrefs

Cf. A026007 (m=1), A027998 (m=2), A248882 (m=3), A248883 (m=4).
Column k=5 of A284992.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^5: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n) option remember; add(
          (-1)^(n/d+1)*d^6, d=numtheory[divisors](n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^5),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^k^5)) \\ G. C. Greubel, Oct 31 2018
    

Formula

a(n) ~ (5*zeta(7))^(1/14) * 3^(2/7) * exp(zeta(7)^(1/7) * 2^(-9/7) * 3^(-3/7) * 5^(1/7) * 7^(8/7) * n^(6/7)) / (2^(163/252) * 7^(3/7) * sqrt(Pi) * n^(4/7)), where zeta(7) = A013665.

A284927 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^6.

Original entry on oeis.org

1, 63, 730, 4031, 15626, 45990, 117650, 257983, 532171, 984438, 1771562, 2942630, 4826810, 7411950, 11406980, 16510911, 24137570, 33526773, 47045882, 62988406, 85884500, 111608406, 148035890, 188327590, 244156251, 304089030, 387952660, 474247150, 594823322
Offset: 1

Views

Author

Seiichi Manyama, Apr 06 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A001014 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), A284900 (k=4), A284926 (k=5), this sequence (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^6, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
    f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); f[2, e_] := (31*2^(6*e + 1) + 1)/63; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^6); \\ Indranil Ghosh, Apr 06 2017
    
  • Python
    from sympy import divisors
    print([sum([(-1)**(n//d + 1)*d**6 for d in divisors(n)]) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (31*2^(6*e+1)+1)/63, and a(p^e) = (p^(6*e+6) - 1)/(p^6 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 9*zeta(7)/64 = 0.141799... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A344303 Number of cyclic subgroups of the group (C_n)^7, where C_n is the cyclic group of order n.

Original entry on oeis.org

1, 128, 1094, 8256, 19532, 140032, 137258, 528448, 797891, 2500096, 1948718, 9032064, 5229044, 17569024, 21368008, 33820736, 25646168, 102130048, 49659542, 161256192, 150160252, 249435904, 154764794, 578122112, 305191407, 669317632, 581662904, 1133202048
Offset: 1

Views

Author

Seiichi Manyama, May 14 2021

Keywords

Comments

Inverse Moebius transform of A160897.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + ((p^7 - 1)/(p - 1))*((p^(6*e) - 1)/(p^6 - 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a160897(n) = sumdiv(n, d, moebius(n/d)*d^7)/eulerphi(n);
    a(n) = sumdiv(n, d, a160897(d));

Formula

a(n) = Sum_{x_1|n, x_2|n, ..., x_7|n} phi(x_1)*phi(x_2)* ... *phi(x_7)/phi(lcm(x_1, x_2, ..., x_7)).
If p is prime, a(p) = 1 + (p^7 - 1)/(p - 1).
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = 1 + ((p^7 - 1)/(p - 1))*((p^(6*e) - 1)/(p^6 - 1)).
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)/7) * Product_{p prime} ((1-1/p^6)/(p^2*(1-1/p))) = 0.2784611791... . (End)

A275710 Decimal expansion of the Dirichlet eta function at 7.

Original entry on oeis.org

9, 9, 2, 5, 9, 3, 8, 1, 9, 9, 2, 2, 8, 3, 0, 2, 8, 2, 6, 7, 0, 4, 2, 5, 7, 1, 3, 1, 3, 3, 3, 9, 3, 6, 8, 5, 2, 3, 1, 1, 1, 5, 6, 9, 2, 4, 3, 1, 4, 0, 6, 8, 5, 1, 6, 2, 9, 5, 1, 3, 0, 8, 7, 5, 6, 2, 6, 7, 0, 2, 0, 5, 2, 1, 8, 6, 4, 7, 0, 5, 1, 9, 8, 1, 3, 1, 4, 2, 0, 3, 7, 7, 4, 5, 7, 2, 3, 9, 7, 0
Offset: 0

Views

Author

Terry D. Grant, Aug 06 2016

Keywords

Examples

			0.99259381992283028267...
		

Crossrefs

Cf. A002162 (value at 1), A013665, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275703 (value at 6), A334668, A334669, A347150, A347059.

Programs

  • Mathematica
    RealDigits[63 Zeta[7]/64, 10, 100] [[1]]
  • PARI
    -polylog(7, -1) \\ Michel Marcus, Aug 20 2021
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^7
    print(s) # Terry D. Grant, Aug 06 2016
    

Formula

eta(7) = 63*zeta(7)/64 = (63*A013665)/64.
eta(7) = Lim_{n -> infinity} A334668(n)/A334669(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{k>=1} (-1)^(k+1) / k^7. - Sean A. Irvine, Aug 19 2021

A347217 Decimal expansion of Sum_{k=2..7} zeta(k).

Original entry on oeis.org

6, 9, 9, 1, 9, 3, 4, 2, 9, 8, 2, 2, 8, 7, 0, 0, 8, 0, 6, 2, 7, 3, 8, 3, 7, 9, 9, 0, 7, 9, 6, 3, 9, 4, 5, 3, 8, 3, 1, 7, 4, 4, 9, 1, 1, 5, 5, 6, 6, 0, 2, 9, 3, 0, 7, 4, 4, 4, 6, 9, 0, 4, 7, 8, 6, 3, 5, 7, 0, 3, 5, 4, 3, 3, 8, 2, 0, 7, 7, 9, 2, 8, 3, 6, 5, 9, 0
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			6.9919342982287008062738379907963945383174491155660...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 7]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347218 Decimal expansion of Sum_{k=2..8} zeta(k).

Original entry on oeis.org

7, 9, 9, 6, 0, 1, 1, 6, 5, 4, 4, 2, 6, 6, 4, 5, 1, 4, 5, 6, 5, 2, 5, 2, 3, 2, 2, 9, 3, 0, 5, 0, 4, 7, 0, 0, 3, 5, 7, 6, 4, 0, 9, 9, 0, 6, 2, 1, 5, 8, 7, 9, 3, 2, 7, 7, 7, 3, 8, 0, 0, 6, 8, 1, 2, 8, 8, 2, 8, 6, 4, 9, 5, 9, 5, 6, 8, 2, 6, 7, 4, 2, 7, 6, 1, 1, 9
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			7.99601165442664514565252322930504700357640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 8]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

Formula

Equals A347217 + A013666. - R. J. Mathar, May 27 2024

A347219 Decimal expansion of Sum_{k=2..9} zeta(k).

Original entry on oeis.org

8, 9, 9, 8, 0, 2, 0, 0, 4, 7, 2, 5, 2, 7, 2, 7, 3, 6, 0, 0, 7, 0, 3, 7, 5, 9, 9, 8, 5, 3, 7, 4, 5, 9, 0, 6, 4, 0, 6, 2, 0, 1, 5, 7, 5, 7, 6, 1, 0, 7, 6, 8, 0, 8, 4, 3, 2, 2, 3, 9, 7, 2, 9, 7, 1, 9, 8, 0, 7, 1, 5, 4, 9, 3, 4, 7, 0, 8, 5, 1, 4, 1, 7, 1, 1, 5, 8
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			8.9980200472527273600703759985374590640620...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 9]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A347220 Decimal expansion of Sum_{k=2..10} zeta(k).

Original entry on oeis.org

9, 9, 9, 9, 0, 1, 4, 6, 2, 2, 3, 8, 0, 5, 4, 5, 4, 4, 5, 4, 0, 7, 5, 2, 1, 9, 5, 7, 4, 3, 7, 7, 7, 8, 0, 8, 1, 0, 6, 8, 0, 3, 5, 2, 8, 9, 1, 7, 5, 2, 4, 5, 6, 0, 1, 5, 8, 0, 1, 8, 6, 2, 9, 1, 8, 3, 4, 3, 6, 3, 0, 1, 4, 4, 9, 8, 9, 9, 8, 0, 9, 6, 1, 0, 8, 6, 3
Offset: 1

Views

Author

Sean A. Irvine, Aug 24 2021

Keywords

Examples

			9.9990146223805454454075219574377780810680...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Total[Zeta[Range[2, 10]]], 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)

A023874 Expansion of Product_{k>=1} (1 - x^k)^(-k^5).

Original entry on oeis.org

1, 1, 33, 276, 1828, 12729, 88903, 582846, 3690325, 22864592, 138658796, 822374485, 4781447342, 27314310586, 153519181630, 849786024496, 4637270263913, 24970548655999, 132788838463944, 697863705334941, 3626864249759775, 18650694625385462, 94948991121030892
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A144048.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^5: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*d^5, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    max = 22; Series[ Product[1/(1 - x^k)^k^5, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^5)) \\ G. C. Greubel, Oct 30 2018
    

Formula

a(n) ~ 3^(127/882) * (5*Zeta(7))^(127/1764) * exp(7 * n^(6/7) * (5*Zeta(7))^(1/7) / (2^(3/7) * 3^(5/7)) + Zeta'(-5)) / (2^(187/882) * n^(1009/1764) * sqrt(7*Pi)), where Zeta(7) = A013665 = 1.008349277381922826..., Zeta'(-5) = ((137/60 - gamma - log(2*Pi))/42 + 45*Zeta'(6) / (2*Pi^6))/6 = -0.0005729859801986352... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp( Sum_{n>=1} sigma_6(n)*x^n/n ). - Seiichi Manyama, Mar 05 2017
a(n) = (1/n)*Sum_{k=1..n} sigma_6(k)*a(n-k). - Seiichi Manyama, Mar 05 2017

Extensions

Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006

A113852 Numbers whose prime factors are raised to the seventh power.

Original entry on oeis.org

128, 2187, 78125, 279936, 823543, 10000000, 19487171, 62748517, 105413504, 170859375, 410338673, 893871739, 1801088541, 2494357888, 3404825447, 8031810176, 17249876309, 21870000000, 27512614111, 42618442977, 52523350144, 64339296875, 94931877133, 114415582592
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Crossrefs

Proper subset of A001015.
Nonunit terms of A329332 column 7 in ascending order.

Programs

  • Mathematica
    Select[Range@34^7, Union[Last /@ FactorInteger@# ] == {7} &] (* Robert G. Wilson v, Jan 26 2006 *)
    Select[Range[2, 34], SquareFreeQ]^7 (* Amiram Eldar, Oct 13 2020 *)
  • PARI
    allpwrfact(n,p) = /* All prime factors are raised to the power p */ { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A113852(n):
        def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**7 # Chai Wah Wu, Feb 25 2025

Formula

From Amiram Eldar, Oct 13 2020: (Start)
a(n) = A005117(n+1)^7.
Sum_{n>=1} 1/a(n) = zeta(7)/zeta(14) - 1. (End)

Extensions

More terms from Robert G. Wilson v, Jan 26 2006
Previous Showing 21-30 of 66 results. Next