cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A013963 a(n) = sigma_15(n), the sum of the 15th powers of the divisors of n.

Original entry on oeis.org

1, 32769, 14348908, 1073774593, 30517578126, 470199366252, 4747561509944, 35185445863425, 205891146443557, 1000030517610894, 4177248169415652, 15407492847694444, 51185893014090758, 155572843119354936, 437893920912786408, 1152956690052710401, 2862423051509815794
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

  • Magma
    [DivisorSigma(15, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Mathematica
    DivisorSigma[15, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^15*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 15); \\ Amiram Eldar, Oct 29 2023
  • Sage
    [sigma(n,15)for n in range(1,15)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^15*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-15)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(15*e+15)-1)/(p^15-1).
Sum_{k=1..n} a(k) = zeta(16) * n^16 / 16 + O(n^17). (End)

A293904 Decimal expansion of zeta(21).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 7, 6, 9, 3, 2, 9, 8, 6, 7, 8, 7, 8, 0, 6, 4, 6, 3, 1, 1, 6, 7, 1, 9, 6, 0, 4, 3, 7, 3, 0, 4, 5, 9, 6, 6, 4, 4, 6, 6, 9, 4, 7, 8, 4, 9, 3, 7, 6, 0, 0, 2, 0, 7, 4, 8, 7, 3, 7, 6, 5, 9, 6, 8, 3, 9, 0, 8, 7, 8, 9, 8, 1, 5, 9, 8, 3, 3, 8, 7, 6, 6
Offset: 1

Views

Author

Frank Ellermann, Oct 19 2017

Keywords

Comments

Web searches find 1.0000004769329867878 in Python tools. Simon Plouffe published 1000 digits for zeta(9) up to zeta(2051) many years ago.

Examples

			1.000000476932986787806...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[21], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)

A161213 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 18.

Original entry on oeis.org

1, 131071, 64570081, 8589869056, 190734863281, 8463265086751, 38771752331201, 562945658454016, 2779530261754401, 24999809265103951, 50544702849929377, 554648540725313536, 720867993281778161, 5081852349802846271, 12315765571578095761, 36893206672442392576
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^17 such that the quotient group Z^17 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 17 of A263950.

Programs

  • Maple
    A161213 := proc(n)
        add(numtheory[mobius](n/d)*d^17,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161213(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161213[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(18-1)/EulerPhi[n]&]; Array[A161213,20]
    f[p_, e_] := p^(16*e - 16) * (p^17-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    A161213(n)=sumdiv(n,d,moebius(n/d)*d^17)/eulerphi(n);
    
  • PARI
    vector(100, n, sumdiv(n^16, d, if(ispower(d, 17), moebius(sqrtnint(d, 16))*sigma(n^16/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^17 - 1)*f[i,1]^(16*f[i,2] - 16)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_17(n)/A000010(n), where J_17 is the 17th Jordan totient function.
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(16e-16) * (p^17-1) / (p-1).
For squarefree n, a(n) = A000203(n^16). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^17, where c = (1/17) * Product_{p prime} (1 + (p^16-1)/((p-1)*p^17)) = 0.1143286202... .
Sum_{k>=1} 1/a(k) = zeta(16)*zeta(17) * Product_{p prime} (1 - 2/p^17 + 1/p^33) = 1.000007645061593... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^17). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A010804 16th powers: a(n) = n^16.

Original entry on oeis.org

0, 1, 65536, 43046721, 4294967296, 152587890625, 2821109907456, 33232930569601, 281474976710656, 1853020188851841, 10000000000000000, 45949729863572161, 184884258895036416, 665416609183179841, 2177953337809371136, 6568408355712890625, 18446744073709551616, 48661191875666868481
Offset: 0

Views

Author

Keywords

Comments

Exponent towers of the form n^(2^(2^2)). - Paul Duckett, Aug 30 2024

Crossrefs

Cf. A013674 (zeta(16)).
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A001016 (8th powers), A008456 (12th powers).

Programs

Formula

Completely multiplicative with a(p) = p^16 for prime p. Multiplicative with a(p^e) = p^(16e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-16).
Sum_{n>=1} 1/a(n) = 3617*Pi^16/325641566250 = A013674. (End)
a(n) = A001016(n)^2. - Michel Marcus, Feb 28 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 32767*zeta(16)/32768 = 16931177*Pi^16/1524374691840000. - Amiram Eldar, Oct 08 2020

A056555 Smallest number k (k>0) such that n*k is a perfect 4th power.

Original entry on oeis.org

1, 8, 27, 4, 125, 216, 343, 2, 9, 1000, 1331, 108, 2197, 2744, 3375, 1, 4913, 72, 6859, 500, 9261, 10648, 12167, 54, 25, 17576, 3, 1372, 24389, 27000, 29791, 8, 35937, 39304, 42875, 36, 50653, 54872, 59319, 250, 68921, 74088, 79507, 5324, 1125
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 4 because the smallest 4th power divisible by 64 is 256 and 64*4 = 256.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[4 - e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
  • PARI
    a(n,f=factor(n))=f[,2]=-f[,2]%4; factorback(f) \\ Charles R Greathouse IV, Apr 24 2020

Formula

a(n) = A053167(n)/n = n^3/A000190(n)^4 = A056553(n)/A053165(n).
Multiplicative with a(p^e) = p^((4 - e) mod 4). - Amiram Eldar, Sep 08 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(16)/(4*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1537848996... . - Amiram Eldar, Oct 27 2022

A161167 a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 17.

Original entry on oeis.org

1, 65535, 21523360, 2147450880, 38146972656, 1410533397600, 5538821761600, 70367670435840, 308836690967520, 2499961853010960, 4594972986357216, 46220358372556800, 55451384098598320, 362986684146456000, 821051025385244160, 2305807824841605120, 3041324492229179280
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Comments

a(n) is the number of lattices L in Z^16 such that the quotient group Z^16 / L is C_n. - Álvar Ibeas, Nov 26 2015

Crossrefs

Column 16 of A263950.

Programs

  • Maple
    A161167 := proc(n)
        add(numtheory[mobius](n/d)*d^16,d=numtheory[divisors](n)) ;
        %/numtheory[phi](n) ;
    end proc:
    for n from 1 to 5000 do
        printf("%d %d\n",n,A161167(n)) ;
    end do: # R. J. Mathar, Mar 15 2016
  • Mathematica
    A161167[n_]:=DivisorSum[n,MoebiusMu[n/#]*#^(17-1)/EulerPhi[n]&]; Array[A161167,20]
    f[p_, e_] := p^(15*e - 15) * (p^16-1) / (p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    vector(100, n, sumdiv(n^15, d, if(ispower(d, 16), moebius(sqrtnint(d, 16))*sigma(n^15/d), 0))) \\ Altug Alkan, Nov 26 2015
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^16 - 1)*f[i,1]^(15*f[i,2] - 15)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

a(n) = J_16(n)/J_1(n) = J_16(n)/A000010(n), where J_k is the k-th Jordan totient function.
From Álvar Ibeas, Nov 26 2015: (Start)
Multiplicative with a(p^e) = p^(15e-15) * (p^16-1) / (p-1).
For squarefree n, a(n) = A000203(n^15). (End)
From Amiram Eldar, Nov 08 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^16, where c = (1/16) * Product_{p prime} (1 + (p^15-1)/((p-1)*p^16)) = 0.1214735403... .
Sum_{k>=1} 1/a(k) = zeta(15)*zeta(16) * Product_{p prime} (1 - 2/p^16 + 1/p^31) = 1.00001530597583... . (End)
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^16). - Ridouane Oudra, Apr 02 2025

Extensions

Definition corrected by Enrique Pérez Herrero, Oct 30 2010

A017693 Numerator of sum of -15th powers of divisors of n.

Original entry on oeis.org

1, 32769, 14348908, 1073774593, 30517578126, 13061093507, 4747561509944, 35185445863425, 205891146443557, 500015258805447, 4177248169415652, 3851873211923611, 51185893014090758, 19446605389919367, 48654880101420712, 1152956690052710401, 2862423051509815794
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017694 (denominator), A013673, A013674.

Programs

  • Magma
    [Numerator(DivisorSigma(15,n)/n^15): n in [1..20]]; // G. C. Greubel, Nov 06 2018
  • Mathematica
    Table[Numerator[DivisorSigma[15, n]/n^15], {n, 1, 20}] (* G. C. Greubel, Nov 06 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 15)/n^15)) \\ G. C. Greubel, Nov 06 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017694(n) = zeta(15) (A013673).
Dirichlet g.f. of a(n)/A017694(n): zeta(s)*zeta(s+15).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017694(k) = zeta(16) (A013674). (End)

A017695 Numerator of sum of -16th powers of divisors of n.

Original entry on oeis.org

1, 65537, 43046722, 4295032833, 152587890626, 1410576509857, 33232930569602, 281479271743489, 1853020231898563, 5000076293978081, 45949729863572162, 30814514057170571, 665416609183179842, 1088993285370003137, 6568408508343827972, 18447025552981295105, 48661191875666868482
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017696 (denominator), A013674, A013675.

Programs

  • Magma
    [Numerator(DivisorSigma(16,n)/n^16): n in [1..20]]; // G. C. Greubel, Nov 05 2018
  • Mathematica
    Table[Numerator[Total[1/Divisors[n]^16]],{n,20}] (* Harvey P. Dale, Sep 26 2014 *)
    Table[Numerator[DivisorSigma[16, n]/n^16], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 16)/n^16)) \\ G. C. Greubel, Nov 05 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017696(n) = zeta(16) (A013674).
Dirichlet g.f. of a(n)/A017696(n): zeta(s)*zeta(s+16).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017696(k) = zeta(17) (A013675). (End)

A161215 a(n) = ((2^b-1)/phi(n))*Sum_{d|n} Moebius(n/d)*d^(b-1) for b = 17.

Original entry on oeis.org

131071, 8589737985, 2821088318560, 281468534292480, 4999961852994576, 184880022956829600, 725978907114673600, 9223160931695984640, 40479533921803813920, 327672500035999538160, 602267704294826658336, 6058148592249392332800, 7268068365187380400720
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(15*e - 15) * (p^16-1) / (p-1); a[1] = 131071; a[n_] := 131071 * Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 08 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); 131071 * prod(i = 1, #f~, (f[i,1]^16 - 1)*f[i,1]^(15*f[i,2] - 15)/(f[i,1] - 1));} \\ Amiram Eldar, Nov 08 2022

Formula

From Amiram Eldar, Nov 08 2022: (Start)
a(n) = 131071 * A161167(n).
Sum_{k=1..n} a(k) ~ c * n^16, where c = (131071/16) * Product_{p prime} (1 + (p^15-1)/((p-1)*p^16)) = 15921.65841... .
Sum_{k>=1} 1/a(k) = (zeta(15)*zeta(16)/131071) * Product_{p prime} (1 - 2/p^16 + 1/p^31) = 7.6295695155...*10^(-6). (End)

A282777 Expansion of phi_{16, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 65538, 43046724, 4295098372, 152587890630, 2821196197512, 33232930569608, 281483566907400, 1853020317992013, 10000305176108940, 45949729863572172, 184889914172333328, 665416609183179854, 2178019803670969104, 6568408813691796120
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A013963 is. - Andrew Howroyd, Jul 25 2018

References

  • George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012. See p. 212.

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), A282548 (phi_{12, 1}), A282597 (phi_{14, 1}), this sequence (phi_{16, 1}).
Cf. A282546 (E_2*E_4^4), A282000 (E_4^3*E_6), A282547 (E_2*E_4*E_6^2), A282253 (E_6^3).
Cf. A013674.

Programs

  • Mathematica
    Table[If[n==0, 0, n * DivisorSigma[15, n]], {n, 0, 15}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    for(n=0, 15, print1(if(n==0, 0, n * sigma(n, 15)), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

a(n) = n*A013963(n) for n > 0.
a(n) = (2156*A282546(n) - 4156*A282000(n) + 8000*A282547(n)/3 - 2000*A282253(n)/3)/16320.
Sum_{k=1..n} a(k) ~ zeta(16) * n^17 / 17. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(15*e+15)-1)/(p^15-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-16). (End)
Previous Showing 11-20 of 22 results. Next