cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 609 results. Next

A212177 Number of exponents >= 2 in the canonical prime factorization of the n-th nonsquarefree number (A013929(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of second signature of A013929(n) (cf. A212172).

Examples

			24 = 2^3*3 has 1 exponent of size 2 or greater in its prime factorization. Since 24 = A013929(8), a(8) = 1.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Programs

Formula

a(n) = A056170(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (Sum_{p prime} 1/p^2)/(1-1/zeta(2)) = A085548 / A229099 = 1.15347789194214704903... . - Amiram Eldar, Oct 01 2023

A192005 Number of non-cyclic abelian groups of finite order. The order is given by A013929.

Original entry on oeis.org

1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 1, 6, 3, 2, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 10, 1, 5, 1, 1, 4, 4, 1, 2, 1, 1, 6, 1, 1, 3, 2, 5, 4, 1, 1, 2, 1, 1, 2, 1, 14, 1, 2, 2, 1, 9, 1, 1, 1, 2, 1, 1, 6, 4, 1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 2, 10, 3, 1, 5, 1, 1, 4, 1, 8, 1, 6, 3, 1, 2, 1, 1, 4, 1, 6, 1, 1, 2, 2, 3, 21, 1, 1, 2, 1, 2, 4, 1, 1, 1, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jul 28 2011

Keywords

Comments

Every abelian group of finite order is the direct product of cyclic groups (there may be only one factor). See, e.g., the A. Speiser reference, Satz 43, p. 49, in combination with Satz 42, p. 47, and also Satz 4, p. 17, with the remark on the direct product on page 28.
See the list of abelian groups of small order in the Wikipedia link.

Examples

			n=1: there is one abelian group of order 4=A013929(1), which is not the cyclic group Z_4 (in additive notation), namely the Klein 4-group: Z_2 x Z_2 (also denoted by (Z_2)^2).
n=2: there are 2 non-cyclic abelian groups of order 8=A013929(2), namely Z_2 x Z_4 and (Z_2)^3.
n=3: order 9=A013929(3), (Z_3)^2.
n=4: order 12, Z_3 x (Z_2)^2 (note that Z_6 = Z_3 x Z_2 and Z_12 = Z_4 x Z_3, where = means 'is isomorphic to').
n=5: order 16. The four non-cyclic groups are (Z_2)^4, Z_4 x (Z_2)^2, Z_8 x Z_2 and (Z_4)^2.
		

References

  • Andreas Speiser, Die Theorie der Gruppen von endlicher Ordnung, Vierte Auflage, Birkhäuser, 1956.

Crossrefs

Programs

  • Mathematica
    FiniteAbelianGroupCount /@ Select[Range[300], ! SquareFreeQ[#] &] - 1 (* Amiram Eldar, Oct 01 2023 *)

Formula

a(n) = A000688(A013929(n)) - 1, n>=1.
See the formula for A000688 using the product of the number of partitions of the exponents in the prime number factorization.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (zeta(2) * c - 1)/(zeta(2) - 1) - 1 = 3.3025914257..., where c = A021002. - Amiram Eldar, Oct 01 2023

A353282 a(n) is the number of solutions (x,y) to the Diophantine equation S(x,y) = (x+y) + (x-y) + (x*y) + (x/y) = A013929(n) when x >= y > 1 and y | x.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 3, 3, 1, 3, 1, 1, 2, 1, 3, 1, 2, 3, 1
Offset: 1

Views

Author

Bernard Schott, Apr 09 2022

Keywords

Comments

This is the generalization of a problem proposed by Yakov Perelman for A013929(93) = 243 (references, links and example).
a(n) is the number of squares > 1 dividing A013929(n), so, there is no solution (x,y) for S(x,y) = m when m is a squarefree number (A005117).
Also, number of times where A013929(n) appears in table A351381.
The smallest nonsquare number m such that equation S(x,y) = m has exactly n solutions, for n >= 0, is A130279(n+1).
Integers k for which number of solutions to the equation S(x,y) = k sets a new record are in A046952.

Examples

			For S(x,y) = (x+y) + (x-y) + (x*y) + (x/y) = A013929(2) = 8, the unique solution is (2,1) because (2+1) + (2-1) + (2*1) + (2/1) = 8, hence a(2) = 1.
For S(x,y) = A013929(93) = 243, the two solutions are (24,8) and (54,2) because S(24,8) = S(54,2) = 243, hence a(93) = 2 (problem from Perelman's book).
		

References

  • I. Perelman, L'Algèbre récréative, Deux nombres et quatre opérations, Editions en langues étrangères, Moscou, 1959, pp. 101-102.
  • Ya. I. Perelman, Algebra can be fun, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + Floor[e/2]; s[1] = 0; s[n_] := Times @@ (f @@@ FactorInteger[n]) - 1; s /@ Select[Range[250], ! SquareFreeQ[#] &] (* Amiram Eldar, Apr 09 2022 *)

Formula

a(n) = A046951(A013929(n)) - 1.

Extensions

More terms from Amiram Eldar, Apr 09 2022

A362041 a(0) = 1; for n > 0, a(n) is the largest k < A013929(n) such that rad(k) = rad(A013929(n)), where rad(n) = A007947(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 12, 10, 18, 5, 9, 14, 16, 24, 20, 22, 15, 36, 7, 40, 26, 48, 28, 30, 21, 32, 34, 54, 45, 38, 50, 27, 42, 44, 60, 46, 72, 56, 33, 80, 52, 96, 98, 58, 39, 90, 11, 62, 25, 84, 64, 66, 75, 68, 70, 108, 63, 74, 120, 76, 51, 78, 100, 144, 82, 126, 13, 57, 86, 35, 88, 150, 92, 94, 147, 162
Offset: 0

Views

Author

Michael De Vlieger, May 01 2023

Keywords

Comments

Permutation of natural numbers.
Let m = A013929(n) and let R_m be the sequence of numbers k such that rad(k) = rad(m). a(n) gives the predecessor of m in R_m.

Examples

			A013929(1) = 4; the smallest k < 4 such that rad(k) = rad(4) = 2 is a(1) = 2.
A013929(2) = 8; the smallest k < 8 such that rad(k) = rad(8) = 2 is a(2) = 4.
A013929(3) = 9; the smallest k < 9 such that rad(k) = rad(9) = 3 is a(3) = 3.
A013929(4) = 12; the smallest k < 12 such that rad(k) = 6 is a(4) = 6.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := Times @@ FactorInteger[x][[All, 1]]; {1}~Join~Table[Function[r, SelectFirst[Range[m - 1, 1, -1], r == rad[#] &] ][rad[m]], {m, Select[Range[225], Not @* SquareFreeQ]}]

Formula

A013929(n) = p^e, a prime power, e > 0, implies a(n) = p^(e-1).
A013929(n) = p^2 implies a(n) = p.

A115228 Nonsquarefree numbers n such that 2n+1 is also nonsquarefree (A013929).

Original entry on oeis.org

4, 12, 24, 40, 49, 60, 76, 84, 112, 121, 144, 148, 162, 171, 175, 180, 184, 212, 220, 256, 264, 292, 312, 328, 364, 387, 400, 412, 416, 420, 423, 436, 472, 480, 490, 508, 512, 544, 580, 612, 616, 625, 637, 652, 684, 688, 712, 722, 724, 760, 796, 808, 812
Offset: 1

Views

Author

Don Reble, Mar 05 2006

Keywords

Comments

For any distinct primes p, q with q odd, contains all n such that n == 0 (mod p^2) and n == -1/2 (mod q^2). - Robert Israel, Oct 21 2016

Examples

			24 is in the sequence because 2^2 divides 24 and 7^2 divides 24*2 + 1.
		

Crossrefs

Programs

  • Maple
    select(n -> not numtheory:-issqrfree(n) and not numtheory:-issqrfree(2*n+1), [$1..2000]); # Robert Israel, Oct 21 2016
  • Mathematica
    fQ[n_] := ! SquareFreeQ[n] && ! SquareFreeQ[2 n + 1]; Select[Range[1000], fQ] (* Robert G. Wilson v, Oct 21 2016 *)
  • PARI
    isok(n) = !issquarefree(n) && ! issquarefree(2*n+1); \\ Michel Marcus, Oct 22 2016

Formula

a(n) ~ n/(1 - 14/Pi^2 + 3*k/2 ) as n -> infinity, where k is the Feller-Tornier constant (A065474). - Robert Israel, Oct 21 2016

Extensions

Corrected by Zak Seidov, Oct 21 2016

A212174 Row n of table represents second signature of A013929(n): list of exponents >= 2 in canonical prime factorization of A013929(n), in nonincreasing order.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 3, 2, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 2, 3, 3, 2, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 4, 2, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 6, 2, 2, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A212177(n).

Examples

			First rows of table read: 2; 3; 2; 2; 4; 2; 2; 3;...
12 = 2^2*3 has positive exponents 2 and 1 in its prime factorization, but only exponents that are 2 or greater appear in a number's second signature. Hence, 12's second signature is {2}. Since 12 = A013929(4), row 4 of the table represents the second signature {2}.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Programs

  • Magma
    &cat[Reverse(Sort([pe[2]:pe in Factorisation(n)|pe[2]gt 1])):n in[1..247]]; // Jason Kimberley, Jun 13 2012

Formula

a(n) = A212172(A013929(n)).
This sequence is both the subsequence of A212171 formed by omitting all 1s and the subsequence of A212172 formed by omitting all 0's. - Jason Kimberley, Jun 13 2012

A283919 The smallest square referenced in A013929 (Numbers that are not squarefree).

Original entry on oeis.org

4, 4, 9, 4, 4, 9, 4, 4, 25, 9, 4, 4, 4, 4, 4, 9, 4, 49, 25, 4, 9, 4, 4, 9, 4, 4, 4, 25, 4, 4, 9, 4, 4, 9, 4, 4, 49, 9, 4, 4, 4, 4, 4, 9, 4, 121, 4, 25, 9, 4, 4, 9, 4, 4, 4, 49, 4, 25, 4, 9, 4, 4, 9, 4, 4, 169, 9, 4, 25, 4, 4, 4, 4, 9, 4, 4, 9, 4, 4, 9, 4, 4
Offset: 1

Views

Author

Robert Price, Mar 17 2017

Keywords

Examples

			A013929(4) = 12, 12 = 2*2*3, so 12 is not squarefree, the square being 2*2 = 4.
		

Crossrefs

Programs

A335234 Number of partitions of k_n into two parts (s,t) such that k_n | s*t, where k_n is the n-th nonsquarefree number (A013929).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 4, 1, 3, 2, 1, 2, 4, 1, 1, 1, 1, 2, 3, 1, 5, 1, 3, 2, 1, 1, 1, 5, 1, 2, 1, 4, 1, 1, 1, 1, 6, 3, 1, 2, 1, 1, 1, 2, 4, 1, 1, 6, 1, 1, 2, 2, 3, 1, 1, 1, 4, 7, 1, 5, 1, 1, 2, 1, 3, 1, 2, 7, 1, 1, 1, 1, 2, 5, 4
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 09 2020

Keywords

Comments

a(n) >= 1.

Examples

			a(4) = 1; The 4th nonsquarefree number, A013929(4) = 12 has 6 partitions into two parts: (11,1), (10,2), (9,3), (8,4), (7,5) and (6,6) with corresponding products 11, 20, 27, 32, 35, 36. A013929(4) = 12 only divides the product 36, so a(4) = 1.
a(5) = 2; The 5th nonsquarefree number, A013929(5) = 16 has 8 partitions into two parts: (15,1), (14,2), (13,3), (12,4), (11,5), (10,6), (9,7) and (8,8) with corresponding products 15, 28, 39, 48, 55, 60, 63 and 64. A013929(5) = 16 divides two of these products, 48 and 64, so a(5) = 2.
		

Crossrefs

Cf. A013929.

Programs

  • Mathematica
    Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[n/2]}] > 0, Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[n/2]}], {}], {n, 300}] // Flatten

A383263 Union of prime powers (A246655) and numbers that are not squarefree (A013929).

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 84, 88, 89, 90, 92, 96, 97, 98, 99, 100, 101, 103
Offset: 1

Views

Author

Peter Luschny, Apr 27 2025

Keywords

Comments

Union of A013929 and A000040. - Chai Wah Wu, Apr 27 2025

Crossrefs

Essentially the same as A363597.

Programs

  • Maple
    with(NumberTheory):
    IsPrimePower := n -> nops(PrimeFactors(n)) = 1:
    IsA383263 := n -> IsPrimePower(n) or not IsSquareFree(n):
    select(IsA383263, [seq(1..104)]);
  • Mathematica
    Select[Range[120], Or[PrimePowerQ[#], ! SquareFreeQ[#]] &] (* Michael De Vlieger, Apr 27 2025 *)
  • PARI
    isok(k) = isprimepower(k) || !issquarefree(k);
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi
    def A383263(n):
        def f(x): return int(n+x+sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1))-primepi(x))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Apr 27 2025
  • SageMath
    def isA383263(n: int) -> bool: return is_prime_power(n) or not is_squarefree(n)
    

A062322 Factorials of nonsquarefree numbers, or A013929(n)!, (including 1).

Original entry on oeis.org

1, 24, 40320, 362880, 479001600, 20922789888000, 6402373705728000, 2432902008176640000, 620448401733239439360000, 15511210043330985984000000, 10888869450418352160768000000
Offset: 0

Views

Author

Jason Earls, Jul 05 2001

Keywords

Crossrefs

Cf. A013929.

Programs

  • Mathematica
    Select[Range[0,30],!SquareFreeQ[#]&]! (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    for(n=0,38, if(issquarefree(n), n+1,print(n!)))
    
  • PARI
    { n=-1; for (m=0, 10^9, if (m>0, f*=m, f=1); if (!issquarefree(m), write("b062322.txt", n++, " ", f); if (n==100, break)); ) } \\ Harry J. Smith, Aug 04 2009

Extensions

Better name from Jon E. Schoenfield, Aug 09 2015
Previous Showing 31-40 of 609 results. Next