cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 609 results. Next

A339741 Products of distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2020

Keywords

Comments

First differs from A212167 in lacking 1080, with prime indices {1,1,1,2,2,2,3}.
First differs from A335433 in lacking 72 (see example).
A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons and strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes;
(3) the prime signature of n is half-loop-graphical.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}           20: {1,1,3}        39: {2,6}
       2: {1}          21: {2,4}          41: {13}
       3: {2}          22: {1,5}          42: {1,2,4}
       5: {3}          23: {9}            43: {14}
       6: {1,2}        26: {1,6}          44: {1,1,5}
       7: {4}          28: {1,1,4}        45: {2,2,3}
      10: {1,3}        29: {10}           46: {1,9}
      11: {5}          30: {1,2,3}        47: {15}
      12: {1,1,2}      31: {11}           50: {1,3,3}
      13: {6}          33: {2,5}          51: {2,7}
      14: {1,4}        34: {1,7}          52: {1,1,6}
      15: {2,3}        35: {3,4}          53: {16}
      17: {7}          36: {1,1,2,2}      55: {3,5}
      18: {1,2,2}      37: {12}           57: {2,8}
      19: {8}          38: {1,8}          58: {1,10}
For example, we have 36 = (2*3*6), so 36 is in the sequence. On the other hand, a complete list of all strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72). Since none of these consists of only primes or squarefree semiprimes, 72 is not in the sequence. A complete list of all factorizations of 1080 into primes or squarefree semiprimes is:
  (2*2*2*3*3*3*5)
  (2*2*2*3*3*15)
  (2*2*3*3*3*10)
  (2*2*3*3*5*6)
  (2*2*3*6*15)
  (2*3*3*6*10)
  (2*3*5*6*6)
  (2*6*6*15)
  (3*6*6*10)
  (5*6*6*6)
Since none of these is strict, 1080 is not in the sequence.
		

Crossrefs

See link for additional cross-references.
Allowing only primes gives A013929.
Not allowing primes gives A339561.
Complement of A339740.
Positions of positive terms in A339742.
Allowing squares of primes gives the complement of A339840.
Unlabeled multiset partitions of this type are counted by A339888.
A001055 counts factorizations.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A339841 have exactly one factorization into primes or semiprimes.

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqps[#]!={}&]

A376311 Position of first appearance of n in the sequence of first differences of squarefree numbers, or the sequence ends if there is none.

Original entry on oeis.org

1, 3, 6, 31, 150, 515, 13391, 131964, 664313, 5392318, 159468672, 134453711, 28728014494, 50131235121, 634347950217, 48136136076258, 1954623227727573, 14433681032814706, 76465679305346797
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
The positions of first appearances are a(n).
		

Crossrefs

This is the position of first appearance of n in A076259, ones A375927.
For compression instead of positions of first appearances we have A376305.
For run-lengths instead of first appearances we have A376306.
For run-sums instead of first appearances we have A376307.
For prime-powers instead of squarefree numbers we have A376341.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=Differences[Select[Range[10000],SquareFreeQ]];
    Table[Position[q,k][[1,1]],{k,mnrm[q]}]

Extensions

a(11)-a(19) from Amiram Eldar, Sep 24 2024

A377783 Least nonsquarefree number > prime(n).

Original entry on oeis.org

4, 4, 8, 8, 12, 16, 18, 20, 24, 32, 32, 40, 44, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 104, 108, 112, 116, 128, 132, 140, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

No term appears more than twice. Proof: This would require at least 4 consecutive squarefree numbers (3 primes and at least 1 squarefree number between them). But we cannot have more than 3 consecutive squarefree numbers, because otherwise one of them must be divisible by 4, hence not squarefree.

Examples

			The third prime is 5, which is followed by 6, 7, 8, 9, ..., of which 8 is the first nonsquarefree term, so a(3) = 8.
The terms together with their prime indices begin:
    4: {1,1}
    4: {1,1}
    8: {1,1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   44: {1,1,5}
   44: {1,1,5}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

For squarefree we have A112926 (diffs A378037), opposite A112925 (diffs A378038).
Restriction to the primes of A120327, which has first differences A378039.
For prime-power instead of nonsquarefree (and primes + 1) we have A345531.
First differences are A377784.
The opposite is A378032 (diffs A378034), restriction of A378033 (diffs A378036).
The union is A378040.
Terms appearing only once are A378082.
Terms appearing twice are A378083.
Nonsquarefree numbers that are missing are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.

Programs

  • Mathematica
    Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]

Formula

a(n) = A120327(prime(n)).

Extensions

Proof suggested by Amiram Eldar.

A332785 Nonsquarefree numbers that are not squareful.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204, 207, 208, 212, 220, 224
Offset: 1

Views

Author

Bernard Schott, Feb 24 2020

Keywords

Comments

Sometimes nonsquarefree numbers are misnamed squareful numbers (see 1st comment of A013929). Indeed, every squareful number > 1 is nonsquarefree, but the converse is false. This sequence = A013929 \ A001694 and consists of these counterexamples.
This sequence is not a duplicate: the first 16 terms (<= 68) are the same first 16 terms of A059404, A323055, A242416 and A303946, then 72 is the 17th term of these 4 sequences. Also, the first 37 terms (<= 140) are the same first 37 terms of A317616 then 144 is the 38th term of this last sequence.
From Amiram Eldar, Sep 17 2023: (Start)
Called "hybrid numbers" by Jakimczuk (2019).
These numbers have a unique representation as a product of two numbers > 1, one is squarefree (A005117) and the other is powerful (A001694).
Equivalently, numbers k such that A055231(k) > 1 and A057521(k) > 1.
Equivalently, numbers that have in their prime factorization at least one exponent that is equal to 1 and at least one exponent that is larger than 1.
The asymptotic density of this sequence is 1 - 1/zeta(2) (A229099). (End)

Examples

			18 = 2 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is not squareful because 2 divides 18 but 2^2 does not divide 18, hence 18 is a term.
72 = 2^3 * 3^2 is nonsquarefree as it is divisible by the square 3^2, but it is also squareful because primes 2 and 3 divide 72, and 2^2 and 3^2 divide also 72, so 72 is not a term.
		

Crossrefs

Cf. A005117 (squarefree), A013929 (nonsquarefree), A001694 (squareful), A052485 (not squareful).
Cf. A059404, A126706, A229099, A242416, A286708, A303946, A317616, A323055 (first terms are the same).

Programs

  • Maple
    filter:= proc(n) local F;
     F:= ifactors(n)[2][..,2];
     max(F) > 1 and min(F) = 1
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Sep 15 2024
  • Mathematica
    Select[Range[225], Max[(e = FactorInteger[#][[;;,2]])] > 1 && Min[e] == 1 &] (* Amiram Eldar, Feb 24 2020 *)
  • PARI
    isok(m) = !issquarefree(m) && !ispowerful(m); \\ Michel Marcus, Feb 24 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A332785(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l, j = n-1+squarefreepi(integer_nthroot(x,3)[0])+squarefreepi(x), 0, isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c += j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c-l
        return bisection(f,n,n) # Chai Wah Wu, Sep 14 2024

Formula

This sequence is A126706 \ A286708.
Sum_{n>=1} 1/a(n)^s = 1 + zeta(s) - zeta(s)/zeta(2*s) - zeta(2*s)*zeta(3*s)/zeta(6*s), s > 1. - Amiram Eldar, Sep 17 2023

A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 6, 1, -1, -2, -3, 7, 1, 0, 1, 3, 6, 10, 3, 2, 2, 1, -2, -8, 11, 1, -2, -4, -6, -7, -5, 3, 13, 2, 1, 3, 7, 13, 20, 25, 22, 14, 1, -1, -2, -5, -12, -25, -45, -70, -92, 15, 1, 0, 1, 3, 8, 20, 45, 90, 160, 252, 17, 2, 1, 1, 0, -3, -11, -31, -76, -166, -326, -578
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

Row n is the k-th differences of A005117 = the squarefree numbers.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   1     2     3     5     6     7    10    11    13
  k=1:   1     1     2     1     1     3     1     2     1
  k=2:   0     1    -1     0     2    -2     1    -1     0
  k=3:   1    -2     1     2    -4     3    -2     1     1
  k=4:  -3     3     1    -6     7    -5     3     0    -2
  k=5:   6    -2    -7    13   -12     8    -3    -2     3
  k=6:  -8    -5    20   -25    20   -11     1     5    -5
  k=7:   3    25   -45    45   -31    12     4   -10    10
  k=8:  22   -70    90   -76    43    -8   -14    20   -19
  k=9: -92   160  -166   119   -51    -6    34   -39    28
Triangle form:
   1
   2   1
   3   1   0
   5   2   1   1
   6   1  -1  -2  -3
   7   1   0   1   3   6
  10   3   2   2   1  -2  -8
  11   1  -2  -4  -6  -7  -5   3
  13   2   1   3   7  13  20  25  22
  14   1  -1  -2  -5 -12 -25 -45 -70 -92
  15   1   0   1   3   8  20  45  90 160 252
		

Crossrefs

Row k=0 is A005117.
Row k=1 is A076259.
Row k=2 is A376590.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377039, absolute version A377040.
Column n = 1 is A377041, for primes A007442 or A030016.
First position of 0 in each row is A377042.
For nonsquarefree instead of squarefree numbers we have A377046.
For prime-powers instead of squarefree numbers we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).

A377430 Numbers k such that there is exactly one squarefree number between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

3, 4, 9, 10, 13, 14, 15, 22, 26, 33, 39, 48, 59, 60, 65, 85, 88, 89, 93, 104, 113, 116, 122, 142, 143, 147, 148, 155, 181, 188, 198, 201, 209, 212, 213, 224, 226, 234, 235, 244, 254, 264, 265, 268, 287, 288, 313, 320, 328, 332, 333, 341, 343, 353, 361, 366
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2024

Keywords

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains only squarefree 10, so 4 is in the sequence.
		

Crossrefs

For composite instead of squarefree we have A029707.
These are the positions of 1 in A061398, or 2 in A373198.
For no squarefree numbers we have A068360.
For prime-power instead of squarefree we have A377287.
For at least one squarefree number we have A377431.
For perfect-power instead of squarefree we have A377434.
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composites, complement A008578.
A005117 lists the squarefree numbers, complement A013929.
A377038 gives k-differences of squarefree numbers.

Programs

  • Maple
    R:= NULL: count:= 0: q:= 2:
    for k from 1 while count < 100 do
      p:= q; q:= nextprime(q);
      if nops(select(numtheory:-issqrfree,[$p+1 .. q-1]))=1 then
        R:= R,k; count:= count+1;
     fi
    od:
    R; # Robert Israel, Nov 29 2024
  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],SquareFreeQ]]==1&]
  • PARI
    is(n,p=prime(n))=my(q=nextprime(p+1),s); for(k=p+1,q-1, if(issquarefree(k) && s++>1, return(0))); s==1 \\ Charles R Greathouse IV, Nov 29 2024

A114374 Number of partitions of n into parts that are not squarefree.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 3, 1, 0, 0, 5, 2, 2, 0, 7, 3, 2, 0, 11, 6, 4, 3, 15, 8, 6, 3, 22, 13, 11, 6, 34, 18, 15, 9, 46, 27, 24, 17, 64, 43, 33, 23, 89, 60, 51, 37, 124, 84, 78, 51, 166, 119, 109, 78, 226, 168, 152, 118, 300, 228, 215, 166, 404, 313, 300, 230, 546, 421, 409
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 09 2006

Keywords

Comments

a(A078135(n)) = 0; a(A078137(n)) > 0.

Examples

			a(12) = #{2*2*3, 2*2*2 + 2*2, 2*2 + 2*2 + 2*2} = 3;
a(13) = #{3*3 + 2*2} = 1.
		

Crossrefs

Programs

  • Haskell
    a114374 = p a013929_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    with(numtheory):
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(i>n or issqrfree(i), 0, b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 03 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n || SquareFreeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A073576(n) - A117395(n). - Reinhard Zumkeller, Mar 11 2006
G.f.: Product_{k>=1} (1 - mu(k)^2*x^k)/(1 - x^k), where mu(k) is the Moebius function (A008683). - Ilya Gutkovskiy, Dec 30 2016

Extensions

Offset changed and a(0)=1 prepended by Reinhard Zumkeller, Jun 01 2015

A140106 Number of noncongruent diagonals in a regular n-gon.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37
Offset: 1

Views

Author

Andrew McFarland, Jun 03 2008

Keywords

Comments

Number of double-stars (diameter 3 trees) with n nodes. For n >= 3, number of partitions of n-2 into two parts. - Washington Bomfim, Feb 12 2011
Number of roots of the n-th Bernoulli polynomial in the left half-plane. - Michel Lagneau, Nov 08 2012
From Gus Wiseman, Oct 17 2020: (Start)
Also the number of 3-part non-strict integer partitions of n - 1. The Heinz numbers of these partitions are given by A285508. The version for partitions of any length is A047967, with Heinz numbers A013929. The a(4) = 1 through a(15) = 6 partitions are (A = 10, B = 11, C = 12):
111 211 221 222 322 332 333 433 443 444 544 554
311 411 331 422 441 442 533 552 553 644
511 611 522 622 551 633 661 662
711 811 722 822 733 833
911 A11 922 A22
B11 C11
(End)

Examples

			The square (n=4) has two congruent diagonals; so a(4)=1. The regular pentagon also has congruent diagonals; so a(5)=1. Among all the diagonals in a regular hexagon, there are two noncongruent ones; hence a(6)=2, etc.
		

Crossrefs

A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
Essentially the same as A004526.

Programs

  • Magma
    A140106:= func< n | n eq 1 select 0 else Floor((n-2)/2) >;
    [A140106(n): n in [1..80]]; // G. C. Greubel, Feb 10 2023
    
  • Maple
    with(numtheory): for n from 1 to 80 do:it:=0:
    y:=[fsolve(bernoulli(n,x) , x, complex)] : for m from 1 to nops(y) do : if Re(y[m])<0 then it:=it+1:else fi:od: printf(`%d, `,it):od:
  • Mathematica
    a[1]=0; a[n_?OddQ] := (n-3)/2; a[n_] := n/2-1; Array[a, 100] (* Jean-François Alcover, Nov 17 2015 *)
  • PARI
    a(n)=if(n>1,n\2-1,0) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    def A140106(n): return n-2>>1 if n>1 else 0 # Chai Wah Wu, Sep 18 2023
  • SageMath
    def A140106(n): return 0 if (n==1) else (n-2)//2
    [A140106(n) for n in range(1,81)] # G. C. Greubel, Feb 10 2023
    

Formula

a(n) = floor((n-2)/2), for n > 1, otherwise 0. - Washington Bomfim, Feb 12 2011
G.f.: x^4/(1-x-x^2+x^3). - Colin Barker, Jan 31 2012
a(n) = floor(A129194(n-1)/A022998(n)), for n > 1. - Paul Curtz, Jul 23 2017
a(n) = A001399(n-3) - A001399(n-6). Compare to A007997(n) = A001399(n-3) + A001399(n-6). - Gus Wiseman, Oct 17 2020

Extensions

More terms from Joseph Myers, Sep 05 2009

A375707 First differences minus 1 of nonsquarefree numbers.

Original entry on oeis.org

3, 0, 2, 3, 1, 1, 3, 0, 1, 0, 3, 3, 3, 3, 0, 2, 0, 0, 1, 1, 1, 3, 2, 0, 3, 3, 2, 0, 3, 0, 2, 3, 1, 1, 3, 1, 0, 0, 3, 3, 3, 3, 0, 2, 0, 2, 0, 0, 1, 3, 2, 0, 3, 3, 2, 0, 1, 1, 0, 2, 3, 1, 1, 3, 0, 1, 0, 2, 0, 3, 3, 3, 0, 2, 3, 1, 1, 3, 2, 0, 3, 3, 3, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2024

Keywords

Comments

Also the number of squarefree numbers between the nonsquarefree numbers A013929(n) and A013929(n+1).
Delete all 0's to get A120992.
The image is {0,1,2,3}.
Add 1 to all terms for A078147.

Examples

			The runs of squarefree numbers begin:
  (5,6,7)
  ()
  (10,11)
  (13,14,15)
  (17)
  (19)
  (21,22,23)
  ()
  (26)
  ()
  (29,30,31)
  (33,34,35)
		

Crossrefs

Positions of 0, 1, 2, 3 are A375709, A375710, A375711, A375712. This is a set partition of the positive integers into four blocks.
For runs of squarefree numbers:
- length: A120992, anti A373127
- min: A072284, anti A373408
- max: A373415, anti A007674
- sum: A373413, anti A373411
For runs of nonsquarefree numbers:
- length: A053797, anti A373409
- min: A053806, anti A373410
- max: A376164, anti A068781
- sum: A373414, anti A373412
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A046933 counts composite numbers between consecutive primes.
A073784 counts primes between consecutive composite numbers.
A093555 counts non-prime-powers between consecutive prime-powers.

Programs

  • Mathematica
    Differences[Select[Range[100],!SquareFreeQ[#]&]]-1
  • PARI
    lista(nmax) = {my(prev = 4); for (n = 5, nmax, if(!issquarefree(n), print1(n - prev - 1, ", "); prev = n));} \\ Amiram Eldar, Sep 17 2024

Formula

Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 6/(Pi^2-6) = 1.550546... . - Amiram Eldar, Sep 17 2024

A076512 Denominator of cototient(n)/totient(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 2, 10, 1, 12, 3, 8, 1, 16, 1, 18, 2, 4, 5, 22, 1, 4, 6, 2, 3, 28, 4, 30, 1, 20, 8, 24, 1, 36, 9, 8, 2, 40, 2, 42, 5, 8, 11, 46, 1, 6, 2, 32, 6, 52, 1, 8, 3, 12, 14, 58, 4, 60, 15, 4, 1, 48, 10, 66, 8, 44, 12, 70, 1, 72, 18, 8, 9, 60, 4, 78, 2, 2, 20, 82, 2, 64, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 15 2002

Keywords

Comments

a(n)=1 iff n=A007694(k) for some k.
Numerator of phi(n)/n=Prod_{p|n} (1-1/p). - Franz Vrabec, Aug 26 2005
From Wolfdieter Lang, May 12 2011: (Start)
For n>=2, a(n)/A109395(n) = sum(((-1)^r)*sigma_r,r=0..M(n)) with the elementary symmetric functions (polynomials) sigma_r of the indeterminates {1/p_1,...,1/p_M(n)} if n = prod((p_j)^e(j),j=1..M(n)) where M(n)=A001221(n) and sigma_0=1.
This follows by expanding the above given product for phi(n)/n.
The n-th member of this rational sequence 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5,... is also (2/n^2)*sum(k,with 1<=k=2.
Therefore, this scaled sum depends only on the distinct prime factors of n.
See also A023896. Proof via PIE (principle of inclusion and exclusion). (End)
In the sequence of rationals r(n)=eulerphi(n)/n: 1, 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5, 10/11, 1/3, ... one can observe that new values are obtained for squarefree indices (A005117); while for a nonsquarefree number n (A013929), r(n) = r(A007947(n)), where A007947(n) is the squarefree kernel of n. - Michel Marcus, Jul 04 2015

Crossrefs

Cf. A076511 (numerator of cototient(n)/totient(n)), A051953.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

  • Magma
    [Numerator(EulerPhi(n)/n): n in [1..100]]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    Table[Denominator[(n - EulerPhi[n])/EulerPhi[n]], {n, 80}] (* Alonso del Arte, May 12 2011 *)
  • PARI
    vector(80, n, numerator(eulerphi(n)/n)) \\ Michel Marcus, Jul 04 2015
    

Formula

a(n) = A000010(n)/A009195(n).
Previous Showing 91-100 of 609 results. Next